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FOREWORD

This research and development was conducted in response to Navy Decision
Coordinating Paper, Education and Training Development (NDCP-Z0108-PN), under
subproject PN.32, Advanced Computer-based System for Instructional Dialogues,
and under the sponsorship of the then Director of Naval Education and Training
(OP-99). The objective of the subproject is to develop and evaluate advanced
techniques of individualized instruction. The present study is concerned with
the development of lesson materials that can be used to evaluate the effective-
ness of computer-generated instruction in comparision to conventional frame-
oriented instruction.

The work was performed under Contract N00123-77-C-0087 by the University
of California, Santa Barbara. Dr. J. D. Fletcher and Mr. John Wolfe served
as t ical monitors.

C RENSON
Director of Programs
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The Navy needs modemn and effictent, Instwmttmal system to mest Meqired
levels of operational readiness. Rucest work In this area has relied heOAviy
on computer-assisted Instruction (CAI) - Becuse there ame Osvra utbOds of
CAI, *am of which are still under develommnt or have received little smpUical
assessment, It is Important to determine which methods are most off Iciest with
certain curricula and student groups

The purpose of this effort was to develop a CUl system for uee In assessing
the relative efficiencies of four modes of teaching remedial arithmetic end
algebra. The four sodes result from orthogonal variation, of two binary
dimensions: $ ad hoc , frame-orianted (AVO ntuto essitre ion-
structure-oriented (ISO) instruction, and_.V didactic, or traditional , Instruction,
versus effective Instruction

roach

Following a literature review regarding generative CAI systems, a computer-
ass isted tutorial. system for remedial mathematics was written In modified LISP
programming language and was Installed on the POP 11/45 computer.4ni the Computer
Systems Laboratory at the University of California, Santa 3arbra.'9lhOe now
system was then compared to five generative system end one problem-solving
system to determine Its suitability for assessing the four nodes for teaching
remedial athemat ics to navy personnel.

A computer-assisted Instruction system in remedial arithmetic and algebra
is almost complete. It provides (1) training for students an the use of a
cathode ray tube plus typewriter keyboard terminal as a mediam of Instruction,
(2) a series of 20-minute Instructional sessions using one or more of five
modules (negative numbers, factors and prime numbers,* fractions, Inequalities,
and simple linear equations), and (3) a pair of on-line teats. Training sessions
and tests alike employ randomly generated problem types and numerical values.
Paper-and-pencil pre- and posttests of mathmtical performance and attitudes
toward mathematics and computers iave been prepare. modules have two or three
levels of numerical problems plus word and story problems.

The APO condition requires that students reach a correct performance crilterion,
on each module In the order listed above. This criterion Includes the meeting of
muariteria In order on the first two levels of difficulty. Separate criteria for
Level 3 (if present), word, and story problems we used; but Items from these
sections of the curriculum are Intermingled dewing trainig. lThe ZOO .ipdti
allows students to ask for a variety of special side not maalable to £10 studens.
In addition, IS0 students need not seet specific performance criteria or stuft

modules or levels within modules in a prearraged order.



Ths didactic condition, which Is. 49WMe with either AYQ or 150 1"-" if ai
to foa two of the four Instmuctimnal Options, gives Instructions In a e 11014
forward Smner With no special emphesis on the smatima eatioms -of tft 4I*
The affective cond;jtiom, also cobinaed with either AMO or 100 instruction-
persmalizs, the Amstruction by calling the student by first ame ns d %n
to. the co-m1uter by a urns selected by the stuadent. Students are, sow- %W it
feel-at the begiamIng of meat sessions. Sort digus, pustle ""U5s W
of f-line conversat ions between two affective students In the smm OVmpbaital
condition are common procedures before regular problem sessions begin.

A comparison with the earlier systems shove that the present system lads
Itself readily to the gathering of empirical data on Its teaching effectivep-
neon. hAmog its strengths are its diverse curriculum, the complex infomt ion
structure of its teaching modules, its considerable flexibility In the kinds of
student requests it can accept, and its wide range of possible dialogue..

Recommendations

The Navy should consider the use of uini- or super-minicamputere (.$., POP
11/45, PIP 11/70, VAX-ll/780) In simple generative CAI systems as a means of
reducing permnent memory demands and operating overhad.

Vt'
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INTRODUCTION

Problem

The Navy needs modern and efficient instructional systems to meet required
levels of operational readiness. Recent work n this area relies heavily on
computer-assisted instruction (CAI). Because there are several methods of CAI,
some of which are still under development and have received little empirical
assessment, it is important to determine which methods are most efficient with
certain curricula and student groups.

Purpose

The purpose of this effort was to develop a multimode computer-assisted
instruction (CAI) system for use in assessing the relative efficiencies of
teaching remedial aritmetic and algebra. These modes result from orthogonal
variation of two binary dimensions.

One dimension is information-structure-oriented (ISO) instruction versus
ad hoc frame-oriented (AFO) instruction. APO instruction may be considered
traditional CAI, with little control exercised by the instructor or curriculum
developer. In contrast, ISO instruction permits a somewhat unstructured dis-
course between computer and student, and permits student initiative in the
selection of topics and methods of learning.

The second dimension is affective versus didactic, or traditional, instruc-
tion. Both of these modes emphasize cognitive elements. Affective instruction,
however, attempts to facilitate learning (and, possibly, personality development)
by providing an instructional experience that explicitly considers attitudes
and emotions.

Background

ISO instruction has its origins in computer science, where artificial
intelligence specialists such as Carbonell (1970b) and Brown and Burton (1978)
have made important innovations. For example, they have developed systems
that permit intelligent dialogue between computer and student as well as a
good deal of student initiative in selecting instructional topics and methods.

Both AFO and ISO instruction have substantial merit but, because of the
greater information base and consequent flexibility of ISO systems, they may
replace APO instruction in a few years. Before advocating primary use of
either kind of instruction, psychologists need to know something about their
relative efficiencies and palatabilities (to students), as well as how that
efficiency and palatability relate to the features that differentiate them.
As noted previously, this effort deals with a working CAI system that can
produce either AFO or ISO instruction, thus permitting the necessary experi-
mentat ion.

Brown (1971) has called for the merging of cognitive and affective emphases in
instruction, terming this merger "confluent" education. In the present project, it
is hypothesized that holding somewhat informal conversations with a computer may help

L 'Ik IL '- ......... lllllllI " " i 1 -- ,, I . . . I' .. ,- - - --. . ..:



students to develop efficient learning strategies, possibly by preventing
fixation on inappropriate activity. Similarly, encouraging students to express
their feelings about mathematics and about computer-assisted instruction may
be beneficial. The other side of this instructional dimension, didactic teach-
ing, is defined by default-it is instruction focused upon explicit intellectual
tasks to be mastered, without emphasis upon emotional factors.

A literature review providing further background for this research is pre-
sented in Appendix A.
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UCSC COMPUTER-ASSISTED
INSTRUCTIONAL SYSTM(

Design and Implementation

The present CAI system, which was developed in the past year, can provide on-
line instruction for the following aspects of arithmetic and algebra: negative
numbers, factors and prime numbers, fractions, inequalities, and simple (linear)
equations.

The system is programmed in a modified version of Harvard's UNIX LISP
(obtained in part from the Navy Personnel Research and Development Center). It
has an expanded list of hardwired functions plus LINEREAD, SLEEP, ASCII, and
CHECKF (like the LISP 1.6 LOOKUP at the University of California, Irvine (UCI)
as well as a new output-formatting function written in LISP). It runs under the
UNIX operating system on the Computer Systems Laboratory and Computer Center
PDP 11/45 computers at the University of California, Santa Barbara (UCSB).

In the problem-generating, responding, and feedback cycle, instructional
items are generated by programs specific to the modules in which they are con-
tained; for example, a fraction problem would be generated by the fractions
module. Numerical fraction problems may be from one of three levels, as in
the following examples:

Level 1: 1/2 + 2/5.
Level 2: 1/2 x (1/6 + 1/3) or (1/6 + 1/3) x 1/2.
Level 3: (1/6 x 1/3) - (1/8 x 1/3).

Two other kinds of problems exist for most modules: word problems and
story problems. Word problems are almost identical to numerical or algebraic
problem but use more words to ask the same questions. For example, a Level 1
fraction numerical problem might ask:

1/3 x 3/4-?

(with 1/3 being the first term, x being the operator, and 3/4 being the second
term), whereas the corresponding word problem might ask:

What is the product of 1/3 and 3/4?

Story problems involve real-world quantities and events; for example, a story
problem for fractions might say, 'The gas gauge on your car indicates that the
tank is 1/4 full. If a full tank holds 20 gallons, how many gallons are in
the tank?"

(The reminder of this section will be easier to follow if the reader
first examines Appendix 3 to learn the system's principal structural units.)

Once the structure of a level of numerical problem has been established,
it is possible to generate quasi-random instantiations of that elals of problems.
The top-level monitor and curri-ulum driver for the system specify what type"
of problem (numerica? word, - story) is to be presented, sad a specific
problem is then genez, ... th the most routine response possible, the student
uses scratch paper as v ...essary to develop an asmr, and then tyW that answr
into the computer via a Lear" A-3 terminal keyboard. The monitor routes this
response to an hglisb interpreter to be sue it is an aammr rather thm a
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request for help, translates it into list notation, and refers it to the
solution analyzer. The solution analyzer codes the responses as correct,
incorrect, or partially correct; and returns them to the monitor, which
arranges for appropriate feedback to the student and for storage of the
coded response. Depending upon the specific teaching method to be employed,
the monitor and curriculum driver next check the student's history, decide
whether a member of the same or a new class of items is to be presented next,
and have the problem generator devise an appropriate new item.

This basic cycle may be interrupted or elaborated on by certain kinds of
student requests. In all teaching conditions, students may end the session
early, request a general set of help instructions, request the answer to the
current problem, or request display of the solution to the current problem.
In the ISO conditions, students my also request a new nodule or subnodule,
request the answer to a calculation that my be of help in the larger problem,
or request hints as to how to proceed with the current problem. Data on requests
for new modules or submodules and on requests for hints are stored in the
student histories. Once a special request has been satisfied, instruction
continues in a natural sequence, except that early logout using QUIT or BYE
leads to nothing new until the next session.

Curriculum

The curriculum of UCSB's CAI system is intended to include higher-level
arithmetic processes and lower-level algebra. Suppes, Goldberg, Kanz, Searle,
and Stauffer (1971) reported that the types of items used in such curriculum
have been rated as low as Grade 1.5. For example, the item

9- -4

is a problem of first grade arithmetic, whereas the item

(9 - X - 4. Solve for X.)

is comparable to algebraic equations used in the UCSB remedial mathematics
course (Math IX, Individualized Instruction in College Algebra), making a
definitive statement of level of problem somewhat difficult. Suppes et al.
based their grade level ratings on the grade level of the textbook in which
problems were found, the performance of CAI students on those problems, the
advice of teachers, and the experience of the research staff.

The ten modules that will be included in the UCSB system are listed below:

1. Negative numbers
2. Factors and Prime Numbers
3. Decimals
4. Absolute Values
5. Fractions
6. IxPonents
7. Square loots
8. Inequalities
9. Simple Linear Xquations

10. Polynocunals

n the present report, no attempt is made to state grade levels of item classes
within these modules. Rather, the modules are listed in an order that ensures

4

W,. A.



that inferred level prerequisites needed in later modules have been covered
in earlier ones. Unfortunately, only five modules-those on negative numbers,
factors and prime nusbers, fractions, inequalities, and simple linear equations-
were completed or nearly so at the time of this report. The principal reasons for
the inability to complete all modules were repeated computer system breakdowns,
and garbage collection problems. The latter required (1) the institution of a
new function (SUPRRG) to ensure that LISP atoms are erased when commands such
as PUTD FILE1AW NIL are used to swap one file out before loading a new one and
(2) modification of LISP to be sure that the garbage from executing various out-
put functions is routinely eliminated.

Appendix c, which provides sample problems for the 10 modules, shows that
problems of more than one level of difficulty are commonly presented within one
module, and that both word and story problems are frequently employed. Word
problems have little real-life reference and use words or groups of words such
as "the product of" in place of "x" in restating problems. Story problems
typically involve real-life situations and require knowledge of concepts such
as miles per hour. The flavor of the curriculum is conveyed by the following
examples of word and story problems from the fractions curriculum. (Under-
lined terms are variables that change when new items are generated, subject to
internal consistency requirements, and parenthesized items are substantive al-
ternatives to underlined terms. Possible variations in numerical entries are
not shown, but random generation of such numbers is employed in setting up cal-
culations to be performed.)

Word Items:

1. Which one is not equal to the others:

1/6, 4/L5, or 4/24?

2. Which is larger: 1/4 or 2/3?

(smaller)

3. Convert 3/2 to a mixed number
(ai; improper fraction)
(its reduced form)

4. What is the product of -2/3 and -5/6?

(difference betwe, en) (m of

5. What is the smallest common denominator of 2/3 and 1/5?

Story Item:

1. Isabel worked for 2-1/4 hours on Friday and 2/3 hours on Saturday.
How many hours did she work?

2. A motorcycle travels 60 u.p.h. How many miles will it travel in 3/4
hour?

3. Rachel had a piece of wire 3-2/-3 feet long. She cut 5/6 feet from the
piece to use in hanging a picture. How many feet of wire were left?

•5



4. On a hike Stanley walked 1-1/6 miles the first hour. At this rate,

how many miles can he walk in 2-375-hurs?

Examples of such items for the other modules are included in Appendix C.

Problems within a module are normally generated at random, subject to being
at the desired level (e.g., Levels 1A and 1B are considered variants on the same
level). Typically, students begin with Level 1 of a module, progress to Level
2 problems intermixed with word and story problems, and finish with Level 3
problems intermixed with word and story problems of the same difficulty as before.

System Operation

ISO Condition

Since most features of the CAI system are present under the ISO condition,
ISO system operation is described first (Figure 1). In addition to the actual
instruction, the system includes a series of tests. The first and last days of
the instructional sessions are testing days, using paper-and-pencil tests con-
sisting of items generated randomly from curriculum modules and submodules.
Measures of attitude toward mathematics and toward the teaching method are also
included. On-line tests of mathematics achievement are also conducted on the
session immediately after the 6th and 12th sessions of actual instruction. These
tests also use random generation of items and cover the entire curriculum; they
do not include attitudinal items.

The English Interpreter. A parser was originally developed for this system
but proved unnecessarily complex, given the degree of natural language usage
required. Therefore, it was modified into an English interpreter for handling
a moderate variety of student input. This interpreter first changes input from
the terminal into list notation where required, as in the case of requests for
the computer to perform a preliminary calculation with the COMPUTE routine.
Then it checks for alternate forms for basic input words, accepting, for example,
"y" and "n" and other variants in place of "yes" and "no." The interpreter also
has a misspelling routine that accepts alternate spellings of words such as
"answer" and "compute." Then it performs a keyword check to recognize student
calls for routines such as COMPUTE, and routes such calls to the appropriate
utilities.

Answers to mathematical questions are routed to the solution analyzer for
scoring and feedback. Individual match programs exist in the solution analyzer
for each mathematics module. In most modules an equivalence program exists for
finding alternate acceptable answers, or answers that are basically correct but
need minor improvement such as reducing a fraction to simplest terms. Answers
to conversational questions in the confluent condition are evaluated to some
degree on the basis of keyword matching. The results of this matching may then
affect the direction of the conversation.

External Bookkeeping, Signin. Signout. etc. When called by an experimenter,
MAKFIL permits the establishment of files for one or more students, calling for
name, date of birth, and teaching conditions (ISO or AFO and didactic or confluent).
An actual teaching session can begin when the experimenter has logged into the
computer, called LISP, and loaded a start-up program. The executive program,
MONITOR, activates SIGNIN, which causes the terminal to display:

Please type (hello).

6
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MONITOR is involved in most aspects of the system, including bookkeeping, signin,
and signout, Ohce the student has typed "(hello)," SIGNIN asks for the student's
name and gives a welcoming message. If the student's name is not rqcognized,
SIGNIN asks for, it tO be repeated, checking the first name and then Ithe last. If
still unrecognized, the student is not allowed to continue until-the experimenter
has discovered the reason for the discrepancy. The filename has. the form Johndoe.

SICNOUT simply ends a session with an appropriate closing message plus a com-
plete logging out from the computer. At the end of each problem, MONITOR asks if
another problem is desired. If not, SIGNOUT is activated. Also, a timing program,
TIMER, activates SIGNOUT at the end of the time allotted for the session.

Item, Response, Feedback Cycle. When it is time to present items, MONITOR
calls CONTROL to decide whether to continue with at earlier tategory of itras
or to begin a new module or submodule. CONTROL checks the student file and
current day's data to see the status of the studeit's progress. In the ISO
condition after Day 1, MONITOR asks if the student wants to continue with
the previous day's module. The student can stay on a chosen module throughout
the experiment, but it may be that a criterion of a certain number of succes-
sive correct responses on a module has been reached, representingsubstantial
over-learning. In that case, CONTROL notifies the student that the module
has been mastered and that a move to new material should be considered.

Once the current module and level of items to be presented are selectedi MONITOR
loads that module. The curriculum generator then generates an appropriate problem,
presents it on the terminal screen, and calculates its answer. The students either
answer the question and receive feedback (right or wrong), *r call a utility program
(ANSWER, SOLVE, HELP, HINT, COMPUTE, LEVEL, NEW MODULE, SKIP or QUIT). If an
answer was given, then Unit 5 (see Appendix A) codes the item and response, keeping
a full record of item characteristics and all responses to eich item:

A response is stored as correct, correct except for needed simplification, or
incorrect. If simplification is needed, the student is told the type of error
and is given an opportunity to correct the original answer. After an incorrect
response, a student is asked some variation of, "Do you want to try this problem
again?" Therefore, a student may offer several answers before moving on to a new
problem.

If the criterion has been met, the student is asked aboutc changing to new
material. When a different module is selected, its set of programs is loaded and
the problem generator for that module is called. Otherwise, the current problem
generator is called for another problem from the current module; and the item,
response, feedback cycle is repeated.

Before each new cycle begins, there is a check to see if the scheduled time
for the session has been exhausted. If so, then the TIMER program automatically
instigates the SIGNOUT process. The session's data are stored at this time.
SIGNIN and SIGNOUT can both be student activities, with the6standad, login process
reserved for the experimenter. The reason for having the expertmenter do login
and logout is to reduce the complexity of student activities.

Student-activated Routines (Utility Calls). The routines are described in
the following paragraphs.

8



1. ANSWER

Students are normally told only whether their answers are right, right
with minor modifications, or wrong. Before responding to a problem, however,
students can type "answer," and Unit 6 (see Appendix B) will arrange for the
correct answer to be displayed. Such a response is recorded as "Give up," and
MONITOR arranges for another item to be presented in the usual fashion. If the
"answer" request is made after an incorrect answer and after the student has asked
to try the problem again, then "Give up" is recorded as a further response fol-
lowing an error and MONITOR arranges for another item to be presented.

2. COMPUTE

This routine (also housed in Unit 6) permits partial solution of a
problem before the student offers a full answer. Suppose a problem were:

3 x (1/4 + 2/3) -*

The student could say:

*compute 1/4 + 2/3

and watch the screen for the resulting partial answer before multiplying by 3.
Should the student type the complete problem of

*compute 3 x (1/4 + 2/3),

the computer will refuse to do the computation. This aid helps to reduce the
purely mechanical demands of the curriculum and conforms with the recent emphasis
upon the use of hand-held calculators in elementary mathematics courses.

3. HELP

This routine from Unit 6 is essentially an introduction to other student
aids. When called, it will display the same information about recomended study
procedures and about ANSWER, COMPUTE, HELP, HINT, LEVEL, NEW MODULE, SKIP, and
SOLVE as were given in the first-day instructions. Following a "help" comand,
the initiative remains with the student. Typically, a student will follow that
command by calling for one of the aids just mentioned.

4. HINT

The "hint" coumand is made after seeing a problem but before attempting
an answer. Progressively more complete hints are possible by calling HINT
repeatedly, if early hints are inadequate. Appendix E displays a story problem
from the Fractions module, followed by eight calls of the "hint" command, with
seven successive cmmands being honored and the eighth command leading to a
report that no more hints are available for this problem. The HINT routines
are stored in Unit 6.

The HINT routines for different modules are separate but similar in
design and operation. This routine for fractions has the formalized goal
structure given below; other modules use intuitive approxziations or simulations

9



of that structure, or somewhat more intelligent, conversational routines for

generating hints. For the fractions problem of Appendix E,

1/2 + (2/3 + 1-1/6) =,

(where / is presented in lieu of f for computer-dictated reasons), HINT checks
the format of the problem to see that the only top-level goals required are given
as follows:.

TOPLIST - (NEST LAST2).

TOPLIST defines the general plan by specifying that a solution requires
the satisfaction of two basic goals: First, the nested expression, (2/3 + 1-1/6),
must be simplified by NEST. Then LAST2 must be satisfied; this is the combining
of the two remaining terms to obtain the final solution. A term in a fraction
is defined as follows:

Term : : = digit+ or digit* SP digit+/digit+.

That is, a term is either an integer of any nonzero length, the ratio of two
integers of any nonzero length, or an integer of any length plus the ratio
of two integers of any nonzero length: SP is used here to denote a space.
(In Backus Normal Form grammars, "+ is used as a symbol to permit one or more
than one of the elements it follows, and "*" functions in the same way but allows
the nonoccurrence of the symbol it follows.)

The second line of the goal structure for our example problem is given by
SOLIST:

SOLIST- ( (NEST CONVERT 2 2 LCM ADD RETAIN)
(LAST2 INVERT MULTIPLY) ).

In the LISP terminology, the CAR of SOLIST is (NEST CONVERT 2 2 LCH ADD RETAIN),
giving NEST and its subgoals. The CADR of SOLIST i; (LAST2 INVERT MULTIPLY),
giving LAST2 and its subgoals. CONVERT 2 2 is the subgoal of converting to
improper form (meaning of the first digit 2) the second term (meaning of the
second digit 2) of the problem. A more complete description of the HINT routine's
goal structure appears in Appendix E.

After receiving all hints requested or available, the student gives
an answer to the problem and receives feedback. Unit 5 then records the number
of hints requested and the correctness or incorrectness of the answer.

5. LEVEL

When a student types "level," MONITOR arranges a display of the options
"easy," "hard," and "mixed" difficulty so that the student can choose the dif-
ficulty of items to be presented. Level 1 items are easy items; Levels 2 and
3 and word or story problems are hard items; and a 50:50 random mixture of
easy and hard items constitutes mixed difficulty.

10
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6. NEW NODULE

When a student responds 'module," the monitor has the terminal dis-
play the list of all modules. The student is than given the choice of a new
module. While it is possible to choose to review a previously studied module,
the usual choice will probably be for a new one. NEW NODULE is also part of
Unit 6.

7. QUIT

At any time in the session, a student can type "quit" and will then
activate the SIQIOUT routine.

8. SKIP

A student who finds a problem too hard (or otherwise undesirable) my
simply type "skip." In that case, a new problem from the same module is
presented and a "skip" response is recorded for the previous problem.

9. SOLVE

Either at the time of first display of a problem, or just after feed-
back about one's own answer to that problem, the student can type "solve."
Then Unit 6 arranges for the terminal to display all steps in the solution of
the problem. A request for solution before attempting the problem is scored by
Unit 5 as "give up," and a request for solution after an attempt is scored as
"give up" on a second trial; the first response is scored on the basis of its
own correctness.

The operation of SOLVE is closely related to that of HINT. SOLVE uses
a production system (Newell, 1973) to set goals and subgoals for the solution
of fraction problems and most other modules. In other parts of the present
system, SOLVE often behaves in a rote fashion because it is easier to program
answers to specific classes of problems than to develop a systematic way of
generating solutions. SOLVE has not yet been developed for the inequalities
and negative numbers modules.

Appendix P displays the first 26 productions required for solving
fraction problems. (Actual programing conformed to this system but was not
written in production system notation.)

Recordkeeping. Recordkeeping and curriculum control In either AFO or ISO
instruction requires categorization of item and response types. Whenever an
item Is presented to a student, the subsequent response is characterized as
falling into one of the following categories:

0 - Correct.
I - Correct except for sign or a need to be further simplified.
2 - Incorrect.
3 - Skip.

• 11



A - Answer requested.
C - Compute command given.
F - Hint command given after hints exhausted.
G - Gave up (can only be a second response to a problem).
H Hint command given.
L - Level command given.
H - Module command given.
P - Help comand given.

Q - Quit command given.
S - Detailed solution requested.

More than one response category may be scored on an occurrence of a problem
because of student use of various aids to instruction. The rules for these
options are as follows: After seeing a problem presented, one can begin with
either A, C, H, L, M, P, S, 0, 1, 2, or 3. The occurrence of A, S, 0, or 3
ends the trial. A 1 or a 2 can lead to A, G, H, or S or may end a trial. An
F can lead to A, C, G, S, 0, 1, or 2, but not to any later path that will ever
contain an H (since F means there are no more hints available).

This discussion implies that the computer does not store specific student
responses. The answers stored by the rules just given will permit consider-
able analysis of the quality of student answers and of the frequency of use of
student-initiated utilities such as ANSWER and SOLVE.

The response record is stored as the value of a variable called RCAT, to-
gether with a characterization of the item, the variable called QCAT. The QCAT
has as its value the level and type of item, the curriculum module involved, and
other relevant information. For example, the fractions module has six elements
on the QCAT tag for an item. Those elements specify:

1. That fractions are involved.
2. The level and sublevel of a numerical problem (if present).
3. Whether or not mixed fractions are involved.
4. Whether or not negative fractions are involved.
5. Whether the item is a numerical, word, or story problem.
6. Whether or not the item is an immediate repetition of the previous one

(e.g., because of a partially correct answer reading to another
try at the problem).

AFO Condition

Differences from ISO System. The present ISO system permits the student to
select specific modules at the beginning of a session (or later) by use of the
MODULE comand. This option is not available to students in the AFO condition
with its fixed order of modules. Whereas most AFO systems have a relatively small
number of items, the generative feature of the present system leads to a much
larger pool from which training items are selected. This should increase the
generality of teaching effects in the AFO conditions somewhat; further research
on the effects of this change may be desirable.

12



The current AFO system not only prevents student selection of specific

modules to study; it also prevents the use of the "compute," "level," and"hint" commands and the full SOLVE routine. None of these aids is frequently
used In other AFO systems. In place of the original SOLVE routine, the AFO
system uses a modified SOLVE for a sample problem rather than for the current
problem. Thus the student must infer how the model solution method can be
modified for use with the specific problem presented. The APO condition pro-
video for exclusion from the HELP routine any mention of the COMUTE, LEVEL,
and HINT routines. These routines are rendered inoperative by a series of flags
activated by the characterization of experimental condition on the student's
data file at the time of signing In for a session.

Use of Performance Criteria in Item and Topic Selection. To complete a
curriculum module, an AFO student must have a performance criterion on each
part of that module. Also, criteria (Table 1) must be met before moving from one
section of a module to another. One cannot receive Instruction in the AFO
condition for a higher-level part of the module until criterion has been reached
on all lower-level parts. Word and story problems are somewhat independent of
the numerical problems with specific level assignments: Typically, word and story
problems are not presented until criterion has been reached at Level 1. There-
after, word and story problems, if used for that module, are randomly interspersed
with the mmerical problems. The perfomance criterion for word problems or for
story problems my be reached either before or after the criterion for Level 2
or Level 3 numerical problems.

Table 1

Criteria to be Met by AFO Students on Successive
Curriculum Modules

Numerical or Algebraic Problems

Curriculum Word Story
Module Level I Level 2 Level 3 Problems Problems

Negative
Numbers 2 2- 2 2

Factors and
Prime Numbers 2 2 - 2 2
Fractions 2 2 2 4 2

Inequalities 2 3 3 3 2

Simple Linear
Equations 2 3 3 2 2

13



Test Items and Test Construction

Pretest and Poattest with Domain-defined Item Selection

Following Glaser and Nitko (1971) and Hively, Patterson, and Page (1968),
the testing program for this system is tied to the curriculum, employing
domain-defined item selection. The domain from which test items can be selected
may be viewed as the set of all items that could be generated from the exist-
ing implementation of UCSB's CAI system. Definition of the domain used here
seems to combine aspects of what Shoemaker (1975) calls the item-banking and
item-forms approaches. In a strict use of the item-banking method, a teaching
objective could be tested by a variety of item that might look quite different.
In the item-forms method, a teaching objective would be so specific that only a
few of the problems would be subject to variation.

Variations in basic forms of word or story problems like those on pages
5 and 6 are compatible with the item-banking approach; variations in names,
numerical values, and verbal quantifiers within one of those basic forms are
compatible with the item-forms approach. Some test constructors using these
approaches might have explicit statements of objectives or justifications of
those objecties, rather than letting the items speak for their own instruc-
tional validity as is done here. Note that the validity of the items used in
tests stems from instructional validity plus an assumption of random sampling
from the total domain or within subdomains.

The pretest on Session 0 and the posttest on Session 19 have each been
designed to last 45 minutes, with an average of about 1 minute allowed for each
of 46 items drawn at random from the 4 or 5 subdomains for each of the 5 cur-
riculum modules of Table 1. These subdomains are the three levels of numerical
or abstract problems plus the word and story problems associated with each
module (see Appendix B). This gives two items from each of the 23 subdomains
being taught in this experiment. Items on the two forms of the test are matched
in the sense that Item 1 is a Level 1 negative numbers problem, for example,
on both Forms A and B. Because of variations of format for story or word problems
of a given module and because there are sometimes subcategories within levels
of the other modulesg items are not necessarily matched in the item-forms
sense. A 5-minute attitude test dealing with attitudes toward both mathematics
and computer-assisted instruction precedes each pretest and posttest. The
development of the pretest and posttest forms is nearly complete; the attitude
test remains to be developed.

Pearlman (1977, p. 99 and p. 145) reported that high correlations were some-
times found between scores on pairs of items in arithmetic tests for addition,
subtraction, multiplication, and division, with r values as high as .75 for
multiplication items. Accordingly, high correlations may be expected between
corresponding pairs of items of Forms A and B of the present test. The correla-
tions may be reduced when content is not matched in an item-form test. Nonethe-
less, the classical effort of increased reliability with increased numbers of
items is expected to yield a substantial parallel-forms reliability for the
total tests.

In either Form A or Form B, all items from one curriculum module appear
before those from another. The use of Forms A and B is balanced within the four

14
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teaching conditions and between pretests and poattests. For example, 10
students in the ISO didactic group will receive Form A for their pretest and
Form B for their posttest while the other 10 students in that group will
receive Form B for their pretest and Form A for their poattest. This will
permit comparison of average difficulty of the two forms and an unbiased measure
of mean improvement from pretest to posttest. Forms A and B are paper-and-
pencil tests administered without the computer.

Testing During Training

During 16 of the 18 days that the computer will be used in this experiment,
there will be continuous instruction and feedback to the students. This permits
measurement of performance on specific classes of items and measurement of the
stage of curriculum reached (for APO students only). However, overall learning
measures during the instructional phase require special procedures.

On Sessions 7 and 13, an on-line test will be given covering aspects of
all modules. Since the computer sessions are scheduled for no more than 15
minutes, an approximately 15-minute test with 15 items will be presented on each
of these sessions. For each of the five modules taught, one Level 1 and one
Level 2 numerical or abstract symbol problem and one story problem will be
generated randomly, with modules represented in the same order as on pretests
and posttests. Alternate forms are not used for these tests. Rather, a new
test will be developed at random for each student on Session 6 and again on
Session 12.

The Off-line Reference Text

A reference booklet for remedial arithmetic and algebra is to be kept
beside each computer terminal during training (but not testing) sessions.
This booklet provides material to aid the student in learning new material or
n reviewing old topics. The five modules of the curriculum are covered in

the booklet in the same order as in Table 1. The printed text will consist
primarily of sample problems and SOLVE routine outputs like that of Appendix F.
It is expected that students needing the help given by the text will transfer
techniques from these sample problems to the problems facing them on the
terminals.

One problem from each level and category of Table 1 is to be presented in
the reference booklet. Problems are ordered by level as well as by module.
A minimum of other material, such as topic headings, is also included. The
booklets will first be developed, stored, and formulated on a PDP 11/45
computer, using the UNIX 1410FF system. Then they will be printed on 8-1/2
by 11-inch white paper by a Printronix lineprinter.
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Design of Experiment Based on Present CAI System

This section describes the design of an experiment that is to be conducted
as part of the current research project.

A 2-by-2 design will differentiate 4 groups of 20 UCSB students. Two of
these groups wil receive training with the ISO system and two with the AFO
system. One ISO group and one AFO group will receive confluent instruction,
while the other ISO group and APO group will receive didactic instruction.

Each subject will be assigned randomly to one of four experimental con-
ditions. A computer file will be created for each student, initially consist-
ing of the student's name, experimental condition, and date of birth. During
the first computer session after the pretest, the student will be taught how
to type messages on the Lear terminal and how to use the special aids provided
within the appropriate teaching condition. This first lesson will also include
a description of the way course material will be presented and advice on how
to learn it. Special informal conversation is generated in the confluent con-
dition even though the system does not permit true understanding of natural
language.

Students used in the experiment will be paid volunteers recruited from courses
and campus centers (such as the Educational Opportunity Program units for Chicanos
and Blacks). Students currently taking a course in the UCSB Department of
Mathematics are not allowed to serve in the experiment. Students using
mathematics in other courses, such as psychological statistics and introductory
physics, are allowed to be subjects if they believe themselves to need remedial
assistance of the sort offered in this experiment. These courses do not directly
cover the curriculum material of this experiment.

Table 2 presents a day-by-day list of sessions and activities for the
experiment. The testing days are not subject to change for any students, and
the ordering of the curriculum units is not subject to change for AFO students.
However, AFO students will not necessarily spend the same proportions of in-
structional time on the different units. Some increase in instructional time
per session may be required because of slow computer operation.

16

1L
.... --- -



Table 2

Test and Training Sessions and Curriculum Topics
(Ordering of Curriculum and Estimated Times

Apply Primarily to AFO Students.)

Session Time Alloted
Number (Minutes) Activities

0 51 Paper-and-pencil pretest (46
min. math; 5 min. attitude).

1 12 Computer training (7 min.),
Negative numbers (5 min.).

2 15 Confluent students; two-
person dialog (9 min.),
negative numbers (6 min.);
didactic students: negative
numbers (15 min.).

3 10 Negative numbers.

4 10 Factors and prime numbers.

5 10 Factors and prime numbers.

6 10 Factors and prime numbers.

7 15 Test.

8 10 Fractions.

9 10 Fractions.

10 10 Fractions.

11 10 Inequalities.

12 10 Inequalities.

13 15 Test.

14 10 Simple linear equations.

15 10 Simple linear equations.

16 10 Simple linear equations.

17 10 Simple linear equations.

18 10 Simple linear equations.

19 51 Paper-and-pencil pretest
(46 min. math; 5 min. attitude).

17
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Comuter-specific Features

The CAI system described herein is normally implemented on the UCSB

Computer Systems Laboratory's PDP 11/45 computer. Much of the system was
originally programmed on the PDP 10 computer at UCI using the LISP 1.6 LOOKUP
language. When the addition of the Harvard UNIX system to the UCSB computers
made their use feasible for this project (as well as essential in view of
troublesome telephone line noise from UCI), project personnel developed a better
LISP interpreter than had previously been available at UCSB (See page 3).

Next, the system material from the UCI PDP 10 was translated and reprogram-
med. In the process of such reprogramming, successful attempts were made to
reduce the memory demands of the system because of the small-core memory of
the 'UCSB computers (96K of 16-bit memory plus 2K in cache memory, with 32K
available to an individual user) compared to the UCI PDP 10 (192K of 36-bit
memory with about 50K normally available to an individual user). The princi-
pal means of such reduction was a procedure not readily possible on the PDP 10
(because of the need to swap large blocks of programs in and out of core to
minimize 1-0 charges), but easy to implement on the PDP 11/45 UNIX operating
system. One example of the nature and effects of this change concerns the
program FRACTION HINT, which required the constant storage of 44,307 characters
in core memory with the PDP 10; with UNIX on a PDP 11/45 it requires only 4100
characters or less to be resident at any one time. The new version of FRACTION
HINT then calls small LISP files as needed; these other files need not be
swapped out after use since they are simply executed without defining and
storing functions in core. The space they occupy during execution is then
reclaimed by using SUPERG, a new LISP garbage collection function described
on page 5, when subsequent files are loaded.

One problem with a 16-bit machine such as the PDP 11/45 is that its operating
system normally allocates no more than 32K of core memory to a single user. This
is probably enough for the present system once some further garbage collection
problems (see p. 5) are solved. If a larger interactive computer such as the
VAX-11/780 does not become available at UCSB shortly, however, local computer
managers may be asked to replace UNIX with the RSXll operating system on at
least one local PDP 11/45 to have Program Logical Address Space capabilities
for accessing a larger amount of core memory. It would also be desirable to
have a LISP compiler with overlay capabilities to improve the speed of the system.
This would be expensive to develop but could greatly improve performance on
a machine such as the PD? 11/45.
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CONCLUSIONS

Although empirical conclusions await the analysis of data obtained with the
CAI system described herein, it is possible to draw conclusions about the system
itself in comparison with other ISO or generative systems. Table 3 summarizes
a variety of property values held by (1) STUDENT, an algebraic word problem
solver (Bobrow, 1968); (2) SCHOLAR, an ISO system for CAI about south America
(Carbonell, 1970b); (3) SOPHIE, an I80 system for CAI about electronic trouble-
shooting (Brown & Burton, 197:; Brown, Burton, & Bell, 1975); (4) BIP, an ISO
system for CAI about programming in BASIC (Barr, Beard, & Atkinson, 1975a, 1975b);
and (5) four generative CAI systems for teaching mathematics. The latter are the
closely related ones of Koffman and Perry (1976) and Gilkey (1974); that of

Uttal, Rogers, Hieronymous, and Pasich, (1970); and the present UCSB system.

Despite the use of a variety of techniques, Table 3 shows that there is a
good deal of commonality among these systems. All of the teaching systems are
capable of generating a wide number of questions rather than retrieving a
limited number of previously stored questions. They also permit a greater range
of student choices or student aids than do AFO systems. Also, both the teaching
systems and the problem-solving system STUDENT contain substantial information in
relatively integrated structures, making it possible to think of them all as
ISO systems. The seven systems break into two groups, however, when one asks
whether or not each has a semantic network of knowledge: SCHOLAR and SOPHIE
clearly do. The others, whose subject matter is more mathematical, have, at
best, weak versions of semantic networks even though they do have complex data
structures. Interpretation of this difference in system types requires clarifica-
tion of the definition of a semantic network, and analysis of the way a semantic
network either contains or could be coordinated with a network of mathematical
knowledge.

Woods (1975) stated:

When one tries to devise a notation or language for semantic
representation, one is seeking a representation which will
precisely, formally, and unambiguously represent any partic-
ular interpretation that a human listener may place upon a
sentence (p. 45).

He terms this the requirement of "logical adequacy" of a semantic representation.
Two other requirements mentioned by Woods are that there must be an algorithm
for translating the original sentence into this representation and algorithms
that can use this representation for future inferences and deductions. It is
not clear that such a semantic representation is possible, although SCHOLAR
approximates it for South America geography. SOPHIE comes close for electronic
troubleshooting, and several psychological modules such as Norman, Rwmelhart,
and the LNR Research Group's (1975) MEMOD are promising attempts to build general
systems of natural language storage, comprehension, and question answering. Note
that Woods' three requirements come close to specifying a total language system
for a human; this effort focuses on the requirement of logical adequacy as being
closest to the subproblem of building semantic networks.
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A semantic network is, first of all, a set of connected n-tuples that
can alternately be represented in a connected graph. Second, the entries of
these n-tuples are natural language words (and numbers) plus formalisms such
as isa or superset (or x), which may or may not be considered part of the
natural language. Parenthesized items are mathematical additions to the more
commonly qualitative semantic networks.

Although STUDENT is a problem-solving system rather than a CAL system,
it has inspired important research into human algebraic behavior (Hinsley,
Hayes, & Simon, 1976; Paige & Simon, 1966). Being limited in the number and
content of its kernal sentences, STUDENT nonetheless is almost competitive
with SCHOLAR and SOPHIE in its natural language capability. STUDENT clearly
shows the compatibility of including mathematical and natural language notions
in the same grammar. With the addition of a SCHOLAR-type network or a SOPHIE-
like parsing system, STUDENT could readily be expanded to the semantic level
of SCHOLAR or SOPHIE. Similarly, Gilkey's (1974) semantic grammar for age
problems could readily be developed to the complexity of STUDENT's.

BIP's grammar is highly complex, but its developers might have to start
over if natural language were to be incorporated in its curriculum information
network.

One reason for the differences between the information structure in the
different systems follows from the nature of the school curriculum. In most
school situations, the mathematics curriculum is relatively content-free even
when word or story problems are used. Story problems tend to involve problem-
specific (local) knowledge (e.g., "Eddy is 25 years younger than his father")
more than general (global) knowledge (e.g., "A father is from 18 to 40 years
older than his child") (Gilkey, 1974, p. 12 and pp. 28-30). Contrast this
with SOPHIE, in which each new troubleshooting problem involves a change in
symptoms but no change either in the laws of physics or in the design of the
equipment to be repaired.

Other distinctions between the various CAI systems of Table 3 are also
possible. The semantic capabilities of SOPHIE are not important so much because
natural language can be employed by computer and student as because of a closely
related reason-that extensive communication is possible between them. SCHOLAR
is much less linguistically advanced than SOPHIE but is nonetheless somewhat
"intelligent" in its communication ability. For example, Collins, Warnock,
and Passafiume (1975) employed SCHOLAR as a computerized tutor to (1) arrange
for the selection of topics according to a hierarchical outline, subject to
modification based on the progress of student tutor interaction, (2) give feed-
back to students that is more than a simple "yes" and "no" (or "correct" and
"incorrect"), simulating human tutors in elaborating on correct responses and
making distinctions between incorrect responses and more desirable responses,
and (3) ask comparable questions in a variety of related formats, thus providing
more "human" instruction. Note that (2) and (3) are as much social features as
intelligent features. They have some attributes of confluent education in the
sense that they make instruction more acceptable to the students while maintain-
ing or enriching its cognitive substance. A fourth characteristic, SCHOLAR's
ability to answer a limited variety of student questions, is somewhat more
relevant to the goal of developing intelligent CAI systems. No CAI system has
been very successful in this area, however.
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What is the difference in capability between the UCSB system responding
appropriately to the command "solve" when a student finds a fraction problem
too difficult, and SCHOLAR responding appropriately to the query? Each task
requires a memory search and a deductive process, with the fraction problem
being more complex than the geography problem. Superficially one might say
that SCHOLAR takes the more complex input because a larger variety of words
is used. However, the UCSB CAI system "understands" much more than "answer,"
"compute," "24," "2/3," or other student input. For example, "solve" means
to solve a specific problem such as (2/3 + 1-1/4)/(1/2) = ; the comprehension
performed by the computer when "solve" is typed is not the meaning of that word
alone but rather of the task to be performed. Whether or not the student types
in the full message, a complex grammar in a high-level form not customarily
encountered by a computer (because of the presence of special functions re-
quired in dealing with fractions) must be employed for the CAI system to analyze
the problem, obtain a numerical answer, and display the steps of solution
together with English text relevant to the computational steps that have been
taken.

Does this mean that the UCSB system is "intelligent?" Is it intelligent
only for computations such as fraction problems that cannot be solved routinely
with languages such as FORTRAN? Or is it the use of explanatory text in a HINT
or SOLVE routine that leads to any claim of intelligence for this aspect of the
system?

Intelligence remains a fuzzy concept associated with (1) communicative
capacity, (2) flexibility in the types of logically or psychologically equivalent
input (or output) that can be accepted (or generated), (3) use of natural
language either with or without a semantic network, and (4) degree of inter-
dependence of computer output and student requests, statements, or question
answering, both from problem to problem and within dialogues based on a single
problem plus remedial or tutorial follow-ups to it. An IBM 360 computer acting
on FORTRAN instructions from a student to solve a specific mathematics problem
has some of the properties of Point 1, is somewhat capable on Point 2 because
equivalent orderings of the same problem can be accepted by the computer, and
fails on Points 3 and 4 until a CAI system of some complexity is added to the
program. For this reason, FORTRAN mathematical computations are not considered
to constitute intelligent CAI; if a LISP-machine or a natural language computer
were developed and then were programmed to perform numerical computations, that
would seem more intelligent but perhaps for no better reason than its novelty.

The UCSB system is strong on Point 1 in the sense that complex mathematical
input can be accepted and understood and that a variety of one-stimulus, one-
response dialogues are possible with utility functions such as HINT or with
confluent material based on pattern matching. With respect to Point 2, there
is flexibility in the acceptance of equivalent numerical problems and feedback
generation (e.g., "good," "correct"), but not in making equivalent statements
of the same word or story problem. This is related to the fact that the natural
language interaction in the UCSB system lacks a semantic network base, making
the system weaker on Point 3 than SCHOLAR or SOPHIE but nonetheless much stronger
than a routine computation with FORTRAN. The addition of a semantic network
of SCHOLAR's complexity but without a natural language parser like SOPHIE's
would be feasible without greater effort than has already been expended on the
UCSB system.

23



With respect to Point 4, the UCSB system's many utility comuands, plus
feedback and information about criteria reached, make it very strong so far
as problem-to-problem interdependence is concerned. Within-problem dialogue
is moderately strong, especially in the case of modules such as simple linear
equations in which the hint given depends upon the student's report of pro-
gress on a problem. There is less remedial or tutorial follow-up to an in-
dividual problem than in SCHOLAR or SOPHIE.

It should be mentioned that any inventions from the field of artificial
intelligence become potential techniques for use in intelligent CAI systems.
Accordingly, Minsky's (1975), "frames" and Abelson's (1975) "plans" may shortly
become components of ISO systems, both UCSB's and others.

What this means is that communication or intelligence is judged partly by

the degree of window dressing (giving the verisimilitude of English dialogue
to the system), partly by the ability of computer and student to evoke a variety
of responses from the other, and (more formally) partly by stating the syntax
and semantics of student and computer outputs.

This reasoning suggests that, if one were to build a semantic-mathematical
network for use in a CAI system, one would want to do two things: (1) focus
on alternate representations of the same items (and recognition of them as
equivalent) by the computer, and (2) application of the system to the teaching
of problems about a largely global body of real-life knowledge such as a specific
engineering task or the operation of a specific financial institution. If the
latter is not done, then there is the possibility of developing such a network
as an investment ir, verbal computer-student communication marginal to the
mathematical subject matter. It is an open question whether such an investment
is better than developing a less sophisticated natural language communication
system as has been done to date in the UCSB CAI system. One reason to think

that the investment might be worthwhile is that diagnosis and remediation of
student difficulties might proceed from intuitive student reports of confusion,
or student queries, as well as from logical analysis of student error patterns
and from statistical analysis of learning histories within a course or experiment.
To some extent these student reports and queries are available in present
mathematical CAI systems, but they deserve development with the aid of true
semantic networks.

In view of this discussion, the existing UCSB CAI system for remedial

arithmetic and algebra is essentially ready for experimental use and has sub-
stantial similarity to existing ISO and generative systems, particularly for
teaching mathematics.
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RECOMMENDATIONS

The Navy should consider increasing the use of mini- and supermini-
computers (e.g., PDP 11/45, PDP 11/70, VAX-11/780) in simple generative CAI
systems as a means of reducing permanent computer memory demands and overhead
costs. The 32K single-user memory limitation on 16-bit machines (all but the
VAX-11/780 just mentioned) may be a problem to some users and may dictate a
move from UNIX to an operating system that can overcome that limitation (p. 18).
Because of slow performance with interpretive systems, overlay LISP compliers may
need to be developed for use with these computers if they are to be considered
satisfactory for the purposes just mentioned.

Further recommendations are deferred pending the collection and analysis
of empirical data on the relative efficiencies of instruction with the four
CAI methods developed in the present study.
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REVIEW OF RELEVANT LITERATURE

Recent Sources of Information About CAI

This section provides a point of entry to the many hundreds of publica-
tions on computer-assisted instruction (CAI). Jamison, Suppes, and Wells
(1974) examined the empirical evidence on the relative effectiveness of CAI
and traditional instruction, as well as evaluating instructional radio and
television and programmed instruction. Fletcher (1975) surveyed CAI devel-
opments in military and civilian education. One of the special strengths
of the report is its description of the major CAI projects in the United
States. Bunderson and Faust (1976) reviewed CAI, and included somewhat less
unpublished material than did Fletcher. Cotton (1976, pp. 175-178) has dis-
cussed CAI in the context of mathematical models of learning and instruc-
tion. LeCarme and Lewis (1975) have edited a conference volume on computers
in education that displays much of the newest thinking on CAI, such as the
information-structure-oriented systems to be discussed below.

AFO and ISO Methods of Instruction

Early AFO systems were programmed to present preplanned text and ques-
tions in a linear order (or a linear order subject to branching arrangements
contingent upon student responses) and to employ preprogrammed feedback to
student answers. The student was limited to a particular format for these
responses. The use of psychological models of learning and memory was
limited to admonitions to course planners to provide immediate feedback
after student answers, to increase difficulty of items by small increments
as instruction progressed, and to present new material as performance on
old items reached criterion.

A more sophisticated theoretical approach to AFO-CAI instruction is
seen in various papers by Atkinson (1972a, 1972b) and his coworkers. In
German-English vocabulary instruction, Atkinson (1972a, 1972b) compared
the effects of sequencing item presentation according to optimization rules
based on the linear model, the trial-dependent Markov model, or according
to the student's choice of the current stimulus. With the maximization
of average percent correct on the poattest as a criterion, the trial-depen-
dent Harkov model was much more effective than the linear model, especially
if different difficulty estimates were used with each item under the former
model. Student self-selection of items was superior to both models except
when the trial-dependent Markov model was employed with separate difficulty
parameters for each Item. Similarly, Atkinson and Paulson (1972) found that
a sequencing strategy based on optimization procedures with the all-or-none
model produced higher pcsttest means following spelling instruction than did
the corresponding procedure for the linear model. A third model's strategy,
that of the random-trials-increment model with individual difference para-
meters for items and students, proved superior to either of the other two
models on the posttest. Cotton (1976) conjectured that the all-or-none
model strategy (i.e., selecting, for the next stiimlus, one of the items
that had shown the fewest successive correct responses since the last error)
is approximated by the student self-selection procedure, explaining the good
performance in that condition in the Atkinson (1972a, 1972b) reports.
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Based on an important set of competing learning models, the aforementioned
line of research dealt best with unstructured curriculum material; that is,
with relatively independent items to be learned. A second trend in mathemati-
cal modeling for CAI tasks has been used for somewhat structured tasks such
as reading (Atkinson, 1972a; Atkinson, 1974) and even more structured tasks
such as arithmetic (Suppes, Fletcher, & Zanotti, 1975, 1976; Suppes, Fletcher,
Zanotti, Lorton, & Searle, 1973). The exponential and power models involved
in these studies are empirically successful but are molar in nature and,
thus, say relatively little about the underlying processes of learning.

Suppes (1972) and Suppes and Morningstar (1972) have developed task-
oriented models of arithmetic instruction. This represents an advance in
psychological theorizing, expanding the sensitivity of psychological theory
to the subject matter being learned. Suppes and Morningstar (1972), and
Offir (1973) employed automaton models of the addition process, and Suppes
(1972) dealt with both automaton models and register machine models of
addition. The latter models have the learner make explict movements to
attend to relevant stimuli, such as the upper right-hand digit of a problem,
and allow for computer-like subroutines to be followed by the student. This
particular set of models is primarily concerned with performance rather than
learning, although a sketch is given in Suppes (1972) for the development
of a possibly hierarchical model of learning employing register machines.

The development of ISO instructional systems is both a direct and indirect
consequence of recent progress in computer science. Direct influence comes
from the pioneering use of semantic network theory by Carbonell (1970b)
in his development of SCHOLAR, a system for teaching or reviewing informa-
tion about South American geography by dialogue between a computer and
a student. Brown, Burton, and Bell (1975), also computer scientists,
developed a second ISO system called SOPHIE (for Sophisticated Instruc-
tional Environment) to teach methods of troubleshooting electronic equip-
ment. Direct influence from computer science to ISO instruction also
comes in the form of progress in the design of interactive computers
and list-oriented computer languages compatible with the storage, pro-
cessing, and retrieval of organized information such as English prose.
The indirect influence comes from recent psychological theorizing using
computer simulation or linguistic formalisms to express memory, comprehen-
sion, retrieval, and question answering regarding highly structured infor-
mation (e.g., Anderson, 1977; Collins & Quillian, 1969; Kintsch, 1974;
Norman, Rumelhart, & the LNR Research Group, 1975). This further example
of a current trend toward cognitive rather than behavioral psychology
helps to explain the interest of psychologists in ISO instruction.

It is convenient here to identify two types of ISO instruction: systems
whose objective is tutoring over a specified subject area, and those designed
to teach a set curriculum (sometimes called "drill and practice" units,
especially in AFO systems). The tutorial systems are not designed to teach
new material to students. Rather, they provide an environment of review
and possible exploration of ideas about already known material. Often either
the computer or the student can structure the session, and each question and
response of the computer is tailored to the individual. In contrast are
systems designed to teach a block of new material. By whatever means or
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model, they determine sequences of material to approximate a non-CAI course
of instruction. All stand-alone courses belong to this category. Indivi-
dualization to a student's needs in these systems is limited to changes in
the pace of learning and to changes in lesson structure achieved by feed-
back procedures. In general, such systems have a firm sequence of lessons
designed by the developers, but problems in this sequence are usually
generated individually and feedback is response-sensitive. Some systems
within this category also contain a tutorial mode. For the most part,
the tutorial components of these systems are not as fully developed as those
designated as tutorial systems here. The student has little control in the
tutoring sessions of the instructional systems, and these systems do not
necessarily allow the student to ask questions or pose problems.

The prototype of ISO-CAI is Carbonell's (1970b) SCHOLAR, which was
later extended by Collins (1974); Collins, Carbonell and Warnock (1974);
Collins and Grignetti (1975); Collins, Warnock,.-Aiello, and Miller
(1975); Carbonell (1970a); Collins and Grignetti (1975); and Collins, Warnock,
and Passafiume (1975). Carbonell (1970b) originally intended SCHOLAR to
be a functional CAI system, but it was later modified to represent artifi-
cial intelligence by simulation of human dialogue, with little attention
given to instructional use. Currently, some instructional emphasis is
found in Collins' (1977) attempt to formalize the Socratic method of
instruct ion.

SCHOLAR is a simulation of a tutor that interacts with students on the
subject of South American geography. By asking questions, either the student
or the computer-tutor can initiate and structure the session. The informa-
tion base of SCHOLAR is stored as a semantic tree structure; that is, the
information is stored as hierarchical interrelations among bits of data
(such as countries, cities, major regions, and their outstanding features).
For example, concepts under Argentina include cities, rivers, and major
regions.

The tutor draws inferences from the knowledge stored in this way as well
as determining the correct responses to factual questions such as "hat
is the largest city of Chile?" Thus, the computer's responses to the student
are generated by the system; these responses are tailored to fit the specific
question or exchange of statements currently taking place.

There is little question that SCHOLAR represents a tremendous advance
in CAI techniques. However, in term of instruction, it is incomplete.
Carbonell specifically omitted internal models of student learning, stating
that since SCHOLAR functioned as a tutor, such models were unnecessary
(Carbonell, 1970a). This seems naive; human tutors are continually form-
ing informal models about what their students know and don't know. More-
over, confirmed hypotheses about their student's knowledge are not discarded
but become part of the tutor's overall picture of the student. Without a
model or record of the student's abilities, SCHOLAR cannot tailor its
tutoring to the student's needs. By ignoring the learner's history, it
can only fit single responses to the immediate question.
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Other tutorial systems also deserve mention here. The best-known
of these is Brown, Burton, and Bell's (1975) SOPHIE (see also Brown &
Burton, 1975; Brown, Rubenstein, & Burton, 1976). For the domain of elec-
tronics troubleshooting, SOPHIE poses problems, answers questions, veri-
fies hypotheses, and formulates theories. The student is encouraged to
experiment. A model of the student's knowledge is created, and within the
parameters of this model, SOPHIE simulates the changes and takes the measure-
ments specified by the student. SOPHIE monitors the student's progress and
provides information and advice when it becomes obvious that the student's
current strategy will not work.

SOPHIE's objective is to create a reactive environment in which the
student can experiment. The student is given the initiative in almost every
exchange. SOPHIE does maintain a rough model of the student's trouble-
shooting attempts, but little is said about this model in system documenta-
tion. Although it records current student hypotheses and evaluates whether
these hypotheses are consistent with known information about the circuit,
nothing is known about its updating function. Like SCHOLAR, however,
SOPHIE is not concerned with identifying particular skills; that is, there
is no emphasis on the student's learning of particular troubleshooting
techniques. No record of student strengths or weaknesses in the subject
matter is kept, so there is no possibility of tailoring the instruction
to the individual. In fact, SOPHIE is one of the least individualized CAI
systems. It presents a similar problem to each student: one circuit with
a flawed component. The basic circuit never changes, only the flawed com-
ponent varies.

SOPHIE contains a clear model of the subject area. It was designed to
troubleshoot one particular circuit, and it "knows" everything about that
circuit. All components and their proper measurements are contained in
its network of information. In addition, there exists a testing procedure
within the system. Once a student claims to have found a faulty component
and requests it replacement, the system asks questions to determine whether
the student understands the consequences of such a request. Using an in-
ternal decision rule (not explained in published reports), SOPHIE either
determines that the student understands, in which case it makes the re-
quested replacement, or else it concludes that the student does not under-
stand and refuses to change the circuit. In the latter case, the student
is advised to continue working on the problem. Although SOPHIE can deter-
mine that the student does not understand the problem, it does not use
this information to structure subsequent dialogue. No student gets special
questions related to a specific misunderstanding. In essence, the student
is told that there is a problem and is left to diagnose it.

The tutoring system of Burton and Brown (1976) for the game "How the
West Was Won" is not precisely a CAI system, but it does tutor a student
by teaching game strategies. Many of SOPHIE's unique ISO features are
found in this system in addition to several new features. In particular,
Burton and Brown have added an explicit model or record of a student's
history in the game.
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'How the West Was Won" is a PLATO game in which two players move along
a sequence of squares. Some of the squares yield special points and some
are designated as short cuts to future squares in the sequence. A player
is given three simple numbers to combine into an optimal move. Possible
operations on the numbers include such things as combining two and multiply-
ing the result times the third, or multiplying any two and adding the pro-
duct to the third. In all, there are sixteen possible moves for every trio.
The player is expected to select the move that will advance him in the game.
The largest number is not always the the best move; it is frequently more
desirable to move to special squares.

The tutor plays the game with a student, and the tutor always makes
the optimal move. The tutor also determines the student's optimal move
and how far the student's actual move is from the optimal choice, but the
student is unaware of these calculations. A record or model of all student
selections is maintained. Within this model are the types of moves (maximum
distance, special squares, short-cut squares) and the number of times these
would be optimal as well as the number of times the student actually used
them in the game. When the tutor determines that the student is weak in
some particular type of move, the program so informs the student the next
time that particular move is made.

Like SOPHIE, this system contains many diagnostic features. Its model
of the subject matter is knowledge of the game; this feature is repre-
sented in terms of possible moves within the rules of the game. It does no
explicit testing to determine whether the student is aware of all possible
moves; the student has control of the session and the tutor asks no ques-
tions. Essentially, the tutor is invisible to the student and interrupts
the game only rarely to provide hints to the student. However, the tutor
does maintain a model of the student and does make an attempt to identify
the student's weaknesses by simulating each move of the student. After
the student has made the same mistake a certain number of times, the tutor
suggests an alternative move. With aids like these, the student learns to
play the game better. A by-product of this process is drill and practice
in arithmetic (Brown & Burton, in press).

Both SOPHIE and the tutor for "How the West Was Won" have one disturbing
feature: They cannot be easily generalized to any other subject area.
Recall the system of SCHOLAR. Given its structure, it could easily be
changed into some other subject matter by alteration of the network.
SOPHIE and the tutor cannot. Both are very large systems operating spe-
cifically upon very small curricula. Language processing and student
models are both specific to the nature of the individual problem at hand and
are completely context-dependent. For example, the tutor depends completely
upon the use of three numbers that can be combined in particular ways.
Changing to another game that did not involve this same possibility would
render the tutor useless. Brown, Collins, and Harris (in press) have
dealt with this problem theoretically, seeking a common theory of under-
standing such disparate areas as simple stories, elementary mathematics,
and electronic circuits. They distinguish between surface traces sum-
marizing exactly what has been happening, and deep structure traces sum-
marizing the decision histories leading to certain responses.
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It should be noted that Brown and Burton (in press) have emphasized
the paradigmatic status of systems such as SOPHIE and "How the West Was
Won." Another of their paradigmatic systems, BLOCKS, was developed to
teach and analyze the process of making classifications based on combina-
tions of block attributes, using complex forms of a rule-learning task
widely employed by experimental psychologists. Monitor units detect inef-
ficient responses by a student and activate a tutor to help the student
rethink the problem. The tutor is reported to have proved oppressive,
apparently giving more information than desired or than could be assimilated.
This caused the authors to desire a psychological model of the learning
process.

Kimball's (1973) tutor for problems of integral calculus contains
archives of problems and their answers in the style of traditional (AFO)
CAI, but it also has a network of possible techniques of each problem
in ISO-CAI style. Little attention is given to this network in the docu-
mentation, and it is not completely obvious how the network is utilized
in the system. The focus of the program is the model of the student.

This is a Markovian model that is created by the system for each student.
The number of states in the model varies according to the number of problem-
solving techniques known to each subject. Kimball was interested in trac-
ing the various theoretical states in which a student could be while solv-
ing one particular problem. His predictions are, in the main, predictions
that a certain technique will be selected next given that the student is
utilizing a particular technique at the moment. This is the prediction
"where will the student go next?"

As a student solves a problem, progress is plotted as a path through
different states in the model. Using the transition probabilities of the
model together with the knowledge of techniques needed for a given problem,
the tutor calculates the probable need for diagnostic intervention. The
calculation is a function of the tutor's technique priorities together with
the current state of the student model. When the number exceeds a fixed
value, the student is informed that solution is unlikely via the current
path and that another technique choice is advised. Upon completion of

the task, the tutor compares its solution with the student's and allows
the student to make the same comparison. Should the student's solution
be superior to the computer's solution (e.g., contain fewer steps), the
tutor "learns" from the student and changes the techniques and solution

steps stored for that problem. In addition, the system reviews its model
of the student at this point. If the student's path to solution is suf-
ficiently inefficient or incorrect, the tutor can force the student into
its "slave mode." This step is taken only when a measure of solution dif-
ficulty reaches a certain level. The measure is calculated as a function
of the number of steps involved in the solution attempt and the difference
between the tutor's and the student's technique selection at each step.
The slave mode takes the student step-by-step through the archive problem
that best utilizes the techniques in question.

Kimball's system makes use of its diagnosis; it selects problems based
on the student's problem-solving abilities and known problem areas. It
utilizes its curriculum to build a model of student knowledge.
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The testing procedure here is based upon each attempt by the student
to solve a single problem; when the transition probabilities in the model
reach a certain point (determined by Bayesian inference), the tutor begins
its diagnosis. It does not attempt to determine by testing and evalua-
tion which skills are not being used properly. Instead, the system simply
asks which techniques the student knows. Self-evaluation alone may be
insufficient in diagnosis, for a student may be unaware that problem-solving
skills are improperly formed.

Another tutorial system to be discussed here is BUGGY, created by
Brown, Burton, and Hausmann (Note 1). It is part of a larger, though
still incomplete system (Brown, Burton, Miller, DeKleer, Purcell, Hausmann,
& Bobrow, 1975) that maps error patterns in high school algebra. BUGGY,
however, deals only with simple problems of addition and subtraction.
The objective of the overall project is to identify a student's specific
error patterns; that is, to diagnose the pattern of errors given a set of
answers to specific problems. BUGGY, however, does not do that. Instead,
it teaches student-teachers to diagnose problems. BUGGY contains a large
number of flawed algorithms for addition and subtraction problems. Then,
much like SOPHIE, it inserts one of these algorithms into the solving
routines, and the system answers questions according to this flaw. The
student-teacher must diagnose the error from BUGGY's pattern of responses.

This seems incompatible with the authors' stated goals; the computer
makes no diagnosis whatsoever. In effect, the student must discover the
computer's error. Of course, since the error patterns are part of the
system, it seems likely that simple modifications could be made to reverse
the process and have the program identify flaws in the student's answers.
However, this strategy does not appear feasible to deal with all high
school algebra. It seems inefficient to program all possible error
patterns; these could be quite numerous. Such an approach does not
appear to differ from AFO-CAI with its anticipated wrong answers and spe-
cified branching. It is too early to determine how well such a technique
will actually function; further research on the subject is currently in
progress, and more information should be available soon.

Uttal, Rogers, Hieronymous, and Pasich (1970) developed a tutorial
system for instruction in analytic geometry. This system permitted random
generation of problems of several types and difficulty levels from each of
17 topics such as properties of circles. It also presented text material
appropriate to the topic being taught, employed diagnostic programs to
determine specific difficulties a student was having, and used remedial
programs to eliminate those difficulties. The diagnostic package used a
Binary Branching Tree Partitioner to decompose a problem into sequential
subproblems, testing as many subproblem as necessary to identify the part
of the larger problem that could not be solved by a certain student. Most
of the planned remedial techniques had not been completed at the time of
publication (Utall et al., 1970, p. 54). Student records were kept with
this tutorial system, but no data were reported in the reference cited.

In contrast, ISO-CAI systems are designed to teach new material.
These systems differ from tutorial CAI in a number of ways; for instance,
the curriculum is generally much larger, a greater variety of lesson formats
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is supplied, and some means of performance evaluation is provided. None
of these CAI systems function solely with semantic networks of simple con-
cepts. In practice, the networks relate much larger blocks of information,
such as entire lessons or complex concepts.

One large-scale ISO-CAI course is LOGIC 57A, Introduction to Symbolic
Logic, currently being taught at Stanford University (see Goldberg & Suppes,
1972, 1974). The course consists of 35 lessons, each of which contains
a varied number of problems. The problems usually involve simple proofs.
An individual's grade for the course is based upon the number of lessons
successfully completed; there is no final examination. The system's record
or model of student performance is updated after each problem, and includes
the student's history of both lesson sequence and problems completed within
the current lesson. The problems themselves are not stored but are generated
from stored skeletal frameworks in response to the current state of the
student record. A single, linear sequence of lessons is intended for all
students.

One unusual feature of the logic system is the lack of a formal
theorem-prover or set of stored solutions. As the student writes a proof,
the program examines it line by line with the internal theorem-analyzer.
The machine takes the working premise of the student, and if it is feasible,
the system then constructs an unseen logical proof with which to check the
student's progress. When the student constructs illogical proofs, the system's
feedback and corrective statements are based upon the student's own approach
and premise rather than one stored in the system as the best solution.

However, little diagnostic help is available in the course. The model
of student knowledge is limited to a record of correct and incorrect re-
sponses. It keeps track of each individual's current lesson but does not
provide a sequence of problems based upon a diagnosis of student difficulties.
The program has no way to recognize or provide special assistance in any
method or technique used in solving problems. Thus, the course does not
contain the components necessary in diagnosis, although it does provide
some individualization in problem sequencing. It contains a highly
structured curriculum but no network of skills or techniques. Without
such a network, the other elements of a diagnostic system are impossible.

A second course offered at Stanford is a course in axiomatic set theory
called EXCHECK (Smith & Blaine, 1976; Smith, Graves, Blaine, & Harinov,
1975). This course allows informal proof techniques, eliminating the
necessity for fully explicit formal proofs. Its intent is to provide a
semantic base for work in natural language processing in set theory.
(For more information, see Smith, Smith, & Rawson, 1974; Smith, 1974.)
Although self-contained, this program functions only as a proof-checker.
A student submits a proof, and the system ascertains whether or not it
is correct. As with the logic course, there is no final examination.
Final grades are determined by the number of correct proofs submitted.
EXCHECK contains no diagnostic capabilities whatsoever; it qualifies as
ISO-CAI only because of its language flexibility; it has no other common
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features with any CAI program described here. It would appear that EXCHECK
functions chiefly as a timesaving device for checking proofs. No information
is provided the student other than whether or not a given proof is correct.

Another course in ISO-CAI is given at Stanford University. This is the
BASIC Instructional Program, better known as BIP (Barr, Beard, & Atkinson,
1975a, 1975b; Barr & Beard, 1976), and is perhaps the beat generative CAI
course currently available. Designed to provide individualized instruc-
tion, BIP contains a remarkable model of student knowledge. BIP teaches
elementary programming in the BASIC programming language. It stores about
100 fully written problems in its curriculum information network (CIN).
Solutions to the problems are not stored; indeed many problems have several
correct solutions, each utilizing a different programming skill. Within
the CIN, each problem is associated with the necessary skills for solution(s),
and the relations among skills is also represented. There is no fixed
curriculum of lesson; BIP scans the information in the CIN and selects the
problem that best utilizes a particular skill or set of skills.

Following every lesson, the student is questioned by the tutor about
confidence in and problems with the lesson solution. Based upon the student's
self-evaluation and responses during the lesson, BIP creates a model of the
student, an internal representation of the student's current knowledge.
In contrast to the models of other generative systems, BIP's curriculum
network is used to model progress in terms of developing skills instead of
the student's history of right or wrong answers. This model is used in
selecting the next problem for the student. BIP is concerned with program-
ming skills rather than exact solutions to problems, and the model contains
the cumulative record of the student's use of various programming skills.
Thus, two students might be shown the same programming problem and be ex-
pected to write very different solutions because of differences in past
performance.

Note that BIP models its curriculum in terms of programming skills,
and it uses these skills in its model of student knowledge. The only
aspect in which it is lacking is the generation of problem to test spe-
cific skills. Currently, the authors of BIP are attempting to implement -

a more complete diagnostic model that includes generative features.

Machine Language Tutor (HALT) (Koffman & Blount, 1975) and its vari-

ants (Gilkey, 1974; Gilkey & Koffman, 1974; Koffman, 1973; Koffan & Perry,
1976) teach either automatic programming in nachine language or digital
systems design at the University of Connecticut. It has as its foundation
(1) a probabilistic grammar that generates and solves problems, and (2)
a detailed model of student knowledge. It Is both a tutor and a stand-
alone course that takes naive subjects through a step-by-step sequence in
elementary machine language programming.

As a teacher of machine language, MALT currently has 26 concepts, which
can be used individually or combined in groups of 2 or 3. These concepts
can be used more than once in a single program. When a problem is generated
by HALT, it is automatically divided into subprogram using the basic concepts.
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There is little variation in this part of the system; even though a student
might structure the problem differently, he must solve HALT's subproblems
rather than his own. In this respect HALT is inferior to the Stanford logic
course, which accepted the student's premise and solved the problem accord-
ingly. For beginning subjects, feedback is provided by HALT at every line
of input. The amount of feedback in later tasks varies, depending upon
the current state of the student information model.

Although the developers of HALT emphasize the need for diagnosis,
little is present. MALT maintains a model of the student's abilities in
basic concepts, and it contains a tree structure for possible problems
in utilizing these concepts either individually or in combinations. Based
upon a student's progress in the concepts, HALT generates appropriate
problems using those concepts. Although no other system has this capability,
MALT is unable to make good use of it. Basically, it interprets a student's
input program one line at a time. If the program fails to run, MALT cannot
isolate the error and the student must do so. Complex programs of more than
one line cannot be diagnosed at all. Thus, MALT can employ its model and
testing procedures only at the most elementary level; it corrects syntax
but not logic. It cannot diagnose the student's programming ability in
complex tasks.

Koffman and Perry (1976) evaluated the effectiveness of HALT's digital
systems design curriculum by a one-semester experiment with two randomly
assigned (possibly quasi-random, in view of the use of a university schedul-
ing algorithm) classes of about 30 students. Previous mean grade point
averages and mean pretest scores favored the control group, but the mean
final exam scores showed a small, nonsignificant difference in favor of
the CAI group, despite the fact that its members spent one-third less time
in class.

The final system to be mentioned here is Gilkey and Koffman's (1974)
and Gilkey's (1974) algebra system. Although it is a generative system, it
cannot be classified as either didactic or tutorial. Based upon features of
the Koffman and Blount (1975), Gilkey (1974), Gilkey and Koffman (1974),
and Koffman and Perry (1976) HALT system, this program also depends upon a
probabilistic grammar for both problem and answer. Gilkey and Koffman are
working primarily with word problems, and their system contains skeletal frames
that the grammar fills to generate sentences. The generated problem is
presented to the student, who is asked to translate the sentence into an
equation. When this is done correctly, the student then solves the equation.
The system monitors both the equation transformation and the solution.

Two terms that are partially synonymous with information-structure-
oriented CAI deserve mention: mixed-initiative CAI and generative CAl.
Mixed-initiative CAI literally means couputer-assisted instruction in
which either the computer or the student can take the initiative in deter-
mining the course of the instructional session. Depending on the nature
of the specific system, the student taking the initiative might select the
subtopic of curriculum to be considered next, ask natural language ques-
tions of the computer, or ask for specific aids by using formatted responses.
In generative CAI, specific questions need not be stored for presentation.
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ing algorithm) classes of about 30 students. Previous mean grade point
averages and mean pretest scores favored the control group, but the mean
final exam scores showed a small, nonsignificant difference in favor of
the CAI group, despite the fact that its members spent one-third less time
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The system monitors both the equation transformation and the solution.

Two terms that are partially synonymous with information-structure-
oriented CAI deserve mention: mixed-initiative CAI and generative CAl.
Mixed-initiative CAI literally means computer-assisted instruction in
which either the computer or the student can take the initiative in deter-
mining the course of the instructional session. Depending on the nature
of the specific system, the student taking the initiative might select the
subtopic of curriculum to be considered next, ask natural language ques-
tions of the computer, or ask for specific aids by using formatted responses.
In generative CAI, specific questions need not be stored for presentation.
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Rather, a procedure for generating members of a category of items exists,
and presentation of items is random or quasi-random within the category
or groups of categories from which generation is taking place at a given
time.

Do these kinds of CAI differ greatly? Gilkey and Koffman (1974) call
their system of teaching high school algebra a generative one, which it is.
However, that system may also be called ISO in that it uses a gra ar to
generate equations or word problems, and uses a concept tree for the total
curriculum as a means of ordering topics. Gilkey and Koffman permitted
students to ask for help or ask to start a problem over. They also were
developing a desk calculator mode in which the student could ask that spe-
cific calculations be performed. Apparently, their system began with
little student initiative but was becoming a true mixed-initiative system.

While the original distinction made by Carbonell (1970b) was between
ISO and AFO systems, it seems that AFO systems will be increasingly genera-
tive and at least partially information-structure-oriented, making a criti-
cal distinction in the future between mixed-initiative and computer-initia-
tive systems, with the former corresponding to ISO systems and the latter
corresponding to AFO systems. This is not to overlook wide differences in
degree of information structure-SCHOLAR and SOPHIE clearly employ a seman-
tic network of knowledge while other systems, like that of Gilkey and
Koffman, employ a more restricted grammar than that of natural language and
thus have a nore specialized network of knowledge. Accordingly, four
kinds of generative systems can be distinguished: mixed-initiative systems
with or without semantic networks and computer-initiative systems with or
without semantic networks.

Affective and Didactic Instruction

Affective education may be defined as instruction intended to influence
students' affective behavior in specific ways in addition to developing
their cognitive capabilities. Affective educators seem to believe that
students' personal well-being is the prime goal. The attainment of intel-
lectual skills can contribute to that well-being but may sometimes have to
be sacrificed temporarily if it interferes with personal equanimity and
feelings of self worth.

The theoretical focus of affective education differs from author to
author, sometimes lacking specificity in terms of the processes by which
certain predicted effects will be obtained when affective methods are em-
ployed. Shiflett (1975), however, is quite specific:

There is no topic or goal within conventional curricula
which does not have an integral affective component.
Loadings are those affective aspects of all learning tasks
steaming from basic concerns or not, which, if taken in-
to account, may enrich personal meaning, increase rele-
vance, and broaden understanding in a manner not possible,
or only haphazardly done, by focus on the cognitive diumn-
sions alone. (p. 127)
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He further mentions three loadings, which he calls orientation, engage-
ment, and accomplishment. Orientation loadings, which are affective
responses related to a desire to learn, include an affective readiness
to learn specific material, tempered by affective responses to one's known
capabilities to learn that material. Engagement loadings are affective
responses associated with the classroom setting and with the learning ex-
perience itself. Accomplishment loadings are affective responses associated
with the completion of a learning task, thus being the emotional counter-
parts of reinforcement and knowledge of results in traditional learning
theory.

Given the foregoing analysis, affective education can be viewed as the
attempt to further personal well-being in general with special attention
being given to orientation, engagement, and accomplishment loadings in
school situations. Affective educators assume that improved affect during
orientation, engagement, and accomplishment will facilitate cognitive
development.

Affective educators may be expected to engage both in activities that
focus upon each of these loadings separately and in others relevant to
two or more loadings at one time. So-called games and exercises are
common activities in affective classrooms. For example, a "blind walk"
in which one person is blindfolded and led around a building or campus by
a fellow student has the apparent purpose of testing and building a trust
between the two. A more important purpose from an academic standpoint
is a possible increase in trust in the teacher and in contentment with the
classroom experience. Thus, the blind walk may help to build more favor-
able orientation and engagement loadings, to use Shiflett's terminology.
A second example would be the use of relaxation instructions when problems
are encountered with classroom work. If successful, they would improve
engagement affect and facilitate learning.

An a priori case in favor of or in opposition to these hypotheses is
easy to make. Alternatively, one can frame an affective model with terms
so theoretical that the model is ipso facto true and the only problem
remaining is to find empirical referents for terms such as orientation
loading. Some research on the effectiveness of affective education exists
and will now be considered. However, it should be noted that most affec-
tive educators are clinically oriented and therefore tend to offer evidence
from case studies or uncontrolled experiments rather than from studies with
refined methodology.

For example, Good, Biddle, and Brophy (1975, p. 200) are not critical
of Kifer's (Note 2) assumption that one can learn from correlational data
(rather than experimental data) whether students who customarily succeed in
school develop a favorable concept of their own ability because of that
success. Kifer found positive relationship between achievement and affec-
tive measures such as self-concept, self-esteem, and locus of control; and
found that this relation was greater in grade seven than in grade five.
Good et al. (1975) realized that these data could also be interpreted as
consistent with the assumption of a reverse effect from the affective domain
to the cognitive or of reciprocal effects in both directions. However, they
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do not mention the possibility of no causal effect whatever, and seem
to indicate that a correlation between an earlier event and a later event
implies that the former has influenced the latter. This example is one
of many in which educators have let a correlation between affective and
cognitive variables lead to a conviction that the development of certain
properties on one have causal relations to the other.

Whether called affective education, humanistic education, confluent
education, or psychological education, the field under discussion here
embraces a variety of viewpoints, ranging from literary (Heath, 1971)
through relatively nonempirical (Ivey & Alachuler, 1973), to academic
and social psychological (Kahn & Weiss, 1973). The current review em-
phasizes the limited segment of literature on affective education, which
deals with the short-term effects of such education upon progress in
academic subjects or upon attitudes toward those subjects. The review is
relatively critical of the field for frequently producing poorly controlled
studies and poorly presented reports of those studies. Such criticism may
be fair but is done gently because affective education is a new field and
has not yet developed a strong research commitment. The reader should be
aware that the present focus upon academic attainment gives only a partial
picture of the dor-ain of affective education, with much less emphasis on
questions of personality development, achievement motivation, and personal
values than most workers in the field would give. For general background
the reader might well examine the sources already cited in this paragraph,
plus Brown (1975) and Brown, Phillips, and Shapiro (1976).

In an experiment on the effects of affective education on high school
students, Stanford (1972) assigned an unstated number of students at random
(subject to scheduling limitations) to eight seminars, of which four were
experimental and four were controls. Experimental groups received what
were called psychological education activities, much like the methods of
Brown (1971, 1975) and others who call themselves confluent educators.
Control groups followed normal procedures for seminars in the innovative
English program of the school under study. Experimental and control groups
were paired by subject uatter, with two pairs studying composition and
grammar and two pairs studying nonfiction and science fiction.

Stanford's report presented the results only briefly, and often involved
significance tests comparing pre- and posttest course performance within
groups rather than between groups, thus making interpretation difficult.
Social sensitivity and leadership, measured with the Project Talent Per-
sonality Inventory, may have been superior in the experimental groups,
but all that is certain is that significant mean improvement occurred
only in the experimental group. A pupil reaction questionnaire showed
that a significantly greater percentage of students in the experimental
groups than in the control groups judged themselves to feel close per-
sonally to their teacher and other members of the seminar. With teacher-
developed tests there oire no significant mean differences between intel-
lectual course achievement of the two sets of groups. On department-wide
tests, both experimental and control groups showed significant mean improve-
ment from pre- to posttest, with a higher level of significance in the ex-
perimental groups. Stanford's research permits the tentative conclusion
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that some affective results were superior with the experimental groups and
that intellectual growth during the course was at least as good with those
groups.

A second high school study (Sigal, Braverman, Pilon, & Baker, 1976)
compared 87 students given sensitivity training in small (15 students)
encounter groups to 270 students in larger (25 to 30 students) control
classes and to 52 students in small (15 or fewer students) classes that
were typically remedial or nonacademic. Assignments to groups were not
random. On standardized personality tests, few significant differences
appeared at the end of the experiment, with most of those obtained favoring
the control groups. No cognitive measures were reported. Anecdotal reports,
such as an indication of reduced trouble with potential delinquent students
after special treatment in the experimental condition, make the sensitivity
condition seem more successful than the objective data Just cited.

Shiflett and Brown (1972) compared the results of confluent training

and traditional training of students in an elementary school teacher pre-
.,. paration program. The confluent group consisted of 21 students; one control

group consisted of 30 students in the same program (given traditional train-
ing); and a second control group consisted of 19 students in the same pro-
gram, who were posttested only. Students were assigned to the three groups
arbitrarily rather than randomly. Comparison of the confluent groups teach-
ing behaviors showed significantly more informality in the teaching behavior
of the confluent student teachers. Higher informality ratings were found
to be significantly associated with higher self ratings of existential
mastery (personal competence). Existential mastery was also significantly
higher for the confluent group than for the two control groups. Nonsigni-
ficant group differences appeared on several other self ratings and
teacher behavior ratings.

Callan (Note 3) hypothesized that moral reasoning could be facilitated
by training in Kohlberg's (1969) theory of moral reasoning, with greater
facilitation if affective methods as well as cognitive ones were employed.
Forty volunteer teachers in a private girls' high school were randomly

assigned to two teacher training programs of 20 teachers each; one with
both cognitive and affective training in moral development and one with
cognitive training only. A somewhat comparable group of 10 teachers in
another private girls' high school served as a control group, which re-
ceived no training. Callan found no significant group differences between
them on any one (or the aggregate) of four measures of moral judgment.
She also found no significant differences in profiles over the four
measures for these groups. She did find significant differences between
the control group and the other two groups on the aggregate of six be-
havioral measures from the Flanders Interaction Scale, with the two experi-
mental groups having higher ratings on acceptance, use of student ideas,
asking of questions, and student talk (responsive or self-initiated), ac-
ceptance of feelings, praise, or encouragement. However, there was no
significant difference .etween the two experimental groups. Accordingly,
one must conclude that cognitive training alone had as great an effect
on behavior as cognitive training plus affective training.
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Callan cites a study by Harris (1977) that compared changes in the mean
moral maturity scores of 11th grade students as a function of type of
training. Her report of that research indicates that a group receiving
both discussion of moral dilemmas and psychological awareness education
showed significant improvement in moral maturity; it appears that a group
receiving only moral discussion either did not show improvement or did
not show as much improvement as the former grcup.

Cantlay (1975) compared three intact (nonrandom) groups of ninth grade
mathematics students. One group received confluent remedial instruction,
and a second group received traditional remedial instruction. The third
group received nonremedial traditional mathematics instruction. Using
corresponding pretest and posttest scores as predictors and values to be
predicted, respectively, Cantlay performed analyses of covariance showing
significantly higher adjusted mean scores for the confluent group than
for the other two groups on 3 out of 11 items in the Pro-math attitudinal
section of the National Longitudinal Mathematical Abilities Battery.
Similar results are shown on other attitudinal sections of the same battery.
Significant superiority also appeared for 1 out of 12 items in the Self-
concept of Ability section of the Brookover Self-concept Scale.

A nonstatistical finding was a trend over five tests given only to
the confluent group: The percent correct of operational skills problems
remained constant, but the percent correct of story problem increased.
Any inferences from this finding must be considered unproven because
different material was covered in each test. However, one possible ex-
planation is that the overall level of performance improved on story problems
but not on numerical problems because confluent education can tap a richer
network of information with the former type of problem than with the latter.
The experiment being conducted in the current project and summarized in
the section of this report entitled Summary of Design of Experiment in
Progress, includes design features necessary to test the robustness of the
original finding and to provide a preliminary test of the hypothesis Just
stated.

At least four evaluation reports have indicated some of the effects of
affective education upon certain forms of academic achievement in the
Philadelphia public schools (Gollub, Note 4; Gollub & Mason, Note 5; Young,
Note 6; Loue, Leibovitz, & Sklar, Note 7; Loue, Note 8). Matched but
nonrandom groups appear to have been used moat often. Significant mean
superiority of affective groups at the elementary, middle, and high school
levels was common but not universal, with significance being more likely on
reading comprehension tests than on vocabulary sections of those tests.

As learning theorists might predict, Loue et al. (Note 7) and Loue
(Note 8) found significant (p < .001) superiority of the affective groups
in a study of Grades 3 through 6 when the affective teachers used specific
strategies to help students develop histories of success in reading.
(Note 7 reported only a p < .10 effect, clarified by Note 8 as a p c .001
effect.) This effect held for both vocabulary and comprehension sections of
the Gates-NcGinities Reading Tests. In contrast, without such strategies
being in use, Young (Note 6) found no significant differences between affective
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and control students' reading scores. McCarthy (1976) failed to produce
significant superiority on either of two reading comprehension tests for
a confluent college group compared to a randomly assigned control group,
each group having been taught for 2 hours per day for 6 weeks. The con-
fluent group did prove significantly superior on two self-concept scores,
both derived from the Bills-Vance-McClean Index of Adjustment and Values.

Affective aims may also be sought with teaching methods not labeled
affective education, of course. Block and Burns (1977) provide relevant
information in their review of mastery learning, a teaching technique in
which students must pass a test on one unit of a subject at a stated level
(e.g., 80% correct) before studying the next unit. Most of their summaries
of mastery learning--or the closely related Personalized System of Instruc-
tion (PSI) advocated by Keller (19G8)-showed favorable affective results
compared to those of conventionally taught classes. Typically, these
effects were significantly increased interest in, or more favorable
attitudes toward, the subject matter; a more favorable attitude toward
the teaching method; improved academic or general self concept; or a more
cooperative attitude or more academic confidence. However, one study showed
significantly greater anxiety for a mastery learning condition, and 8 out of
10 comparisons (usually employing PSI) showed higher rates of withdrawal
from courses using mastery procedures than from control classes; signifi-
cance tests were not performed in these 10 cases. Since Block and Burns
(1977) also report general superiority of mastery groups on subject matter
pretests, the mastery conditions seem generally favorable to both cognitive
and school-related affective performance.

Block (1972) earlier pointed to an inverse relation between affective
and cognitive effects at certain levels of mastery. He used a questionnaire
to measure interest in matrix arithmetic (tendency to seek out activities,
skills, and understandings associated with it) and attitude (emotional
tendency to act in a positive or negative way toward it), taking these
measurements immediately after a four- or five-session training series
(short-term measures) and again 2 weeks later (intermediate-term). Com-
parison of the achievement of five groups (nonmastery, 65% mastery required,
75% mastery required, 85% mastery required, and 95Z mastery required)
showed a regular increase in average achievement test percent correct,
with the nonmastery group scoring between the two lowest mastery groups.
However, the corresponding monotonically increasing trends for short-term
interest and attitude means were broken by the lowest ,asans occurring
in the 75 percent group. Mean short term attitude (but not interest)
also declined slightly from the 85 percent to the 95 percent mastery con-
ditions. Intermediate measures of both interest and attitude were mono-
tonically increasing over mastery groups except for declines from the 85
percent to the 95 percent mastery conditions. Nonmastery group interest
and attitude scores were low throughout both tests but were not perfectly
correlated with their relative achievement scores. These findings are
not wholly consistent with each other, but they do suggest, at least, that
85 percent may be as high a mastery level as should be sought with the
subject matter age group (8th graders) in question unless one is willing
to sacrifice affective gains for a final increment of achievement.
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Further information about attitudinal factors in mathematics learning
is given in a review article by Aiken (1970). That author places special
emphasis upon teacher characteristics. If those characteristics can be
precisely specified, then it seems possible that CAI systems with those
characteristics may be at least partially realizable, possibly by com-
bining aspects of cognitive and affective instruction.
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STRUCTUMAL UNITS OF THE UCSB
COMPUTER-ASSISTED INSTRUCTIONAL SYSTM4

1. A set of programs for external bookkeeping, student login, and
instructions to the student not handled elsewhere.

2. A first-day unit of instruction on use of the computer and of the
instructional systems.

3. A problem generator for numerical problems, word problems, and story
problems. Selection of items within a module, such as negative numbers or
fractions, is essentially random and subject to restrictions on difficulty
level within various parts of the module. The calculation of correct answers,
and coding of student questions, is also performed here.

4. A unit for coding student responses to specific questions and for
keeping track of whether or not a performance criterion has been met for the
current curriculum module.

5. A user-called system for generating and displaying ANSWER, COMPUTE,
QUIT, HELP, HINT, NEW MODULE, and SOLVE aids.

6. An English interpreter to permit limited student inquiries via the
routines listed above.

7. A special program package for use in a humanized education condition.
This condition is intended to improve student rapport with the instructional
system by introducing personalizing features and informalities into the basic
procedure.

8. A monitor to route other programs and data in and out of core memory.

9. A control unit that aids in module selection by retrieving the
previous session's data and examining how far the student had progressed
at the end of that session.
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DESCRIPTION OF CURRICULUM NOULES WITH SLE PRORLDES

Level Sample Problem Restrict ions

Negative Numbers Module
a

IA -2 x 3 - Any operator. Positive and negative integers
from I to 9.

15 -(2 + -3). Any operator. Positive and negative integers

from I to 9.
2A (-8 + 2) x 7 - Any operator (except division vithin parentheses).

Positive and negative integers from 1 to 9.
25 -3 x (6 - 5) - Any operator (except division within parentheses).

Positive and negative integers from 1 to 9.
Word In the product of a negative No restrictions.

integer and a positive integer
positive or negative?

Story On Monday. Andy had a bank balance No restrictions.
of $52. On Tuesday he wrote a
check for $23. On Wednesday he
wrote a check for $36. What was
his balance after writing the
two checks?

Factors and Prime Numbers Nodule s

1 What are 2 factors of 24? Numbers from 2 to 50.

2A The set of all factors Selected numbers with at least 3 factors.
of 36 is:

25 What are the prim factors Any nonprium number under 50.
of 361

Word The complete factorization of Any prime number under 50.
a certain number t 13 2 2 1).
What is the number?

Story A 6-by-8 rectangle is covered Select numbers from 6 to 50 that have a comon
with squares that are all factor other than.l.
the sam size. What is the
largest square that can be used?

Deimls Module

1 $2.43 Up to 2 dieits before deciml point, and 2 digits

+ .28 after decimal point. Addition or subtraction.
Dollar sign present or absent.

2 4.21 Up to 2 digits before deciml point of multiplicand
x70.2 or mult iplier. Up to 2 digits after decimal point

of mltiplcand or multiplier. Values from 2 to 9.
Word Find the equivalent fraction. Numerator from .01 to 1.99.

Type the value of Its numerator.
.23 - /100

Story Steel rods mesuring 7.03 inches. No restrictions.
8.25 inches, and 6.5 inches were
cut from a rod 25 inches long.
How may inches were left after
the three pieces of rod were
cut off?

aNodule actually used in present experiment.
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Level Sample Problem Restrictions

Absolute Values Module

1 1-411 Positive or negative integers from I to 99 in
absolute value.

2 124 - (-35)J - Pairs of positive or negative integers from 1
to 99 in absolute value. Intervening operator
either + or -.

3 1-121 -1-221 - Pairs of positive and negative integers from 1
to 99 in absolute value. Intervening operator
either + or -.

Word If the absolute value of a number No restrictions.
is greater than the number itself,
is the number itself negative or
positivel

No Story
Problems

Fractions Modul
e
a

1 1/3 + 1/2 - Addition, subtraction, multiplication, or division.
Terms are either proper fractions with denominator
from 2 to 9 or mixed fractions with an integer from
I to 3 plus a proper fraction of the kind just
stated. Term my be negative or positive.

2A 1-1/2 x (1/4 - 2/3) - Same as for Level 1.

2B (1/2 + 1-1/5) x 2/7 - Same as for Level 1.

3 (1/2 + 1/4) x (2/3 - 1/5) - Same as for Level 1.

Word Which is not equal to the others: All three quantities between 0 and 1 in value.
1/6, 4/5, or 4/24? One of the three is the reduced form of one other.

The third has a different value.

Story A turtle traveling from San Francisco No restrictions.
to Los Angeles travels at the rate of
3/4 MPH. How many miles will it go
in 1-1/2 hours?

Exponents Module

1 3* 2 - Base 1 to 5. Exponent 0 to 6.

2 2 SC (2 - 1) - Base 1 to 5. Each digit in exponent from -2 to +2.
Zero*s not displayed. Base 1 to 4. Zeroes not
displayed.

3A (3 '2) * -1 Base I to 4. Exponent -2 to +2.

33 (2/3) ** 3 - Multiplication or division of the base numbers

(Do not perform the division until which mast each be an integer between -2 and +2.

after all exponentiation is complete.)

Word The third power of 3 is 27. No restrictions.
What Is the third power of 2?

Story A certain perfect cube has its height. No restrictions.
width, and depth equal to 4 inches.
How many perfect 1-inch cubes will fit
inside it?

aModule actually used in present experiment.
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Level Sample Problem Restrictions

Square Roots Module

1 25 * (1/2 All exact squares from 1 to 225. Also all such
squares divided by 100 or ultiplied by 100.

2 ~~ 25 i(/)Ns sI h an rm.1t 250 osv

problem. Answer roobled to Iethe irs dii

after the decimal place.
3 25 ** (3/2) All exact squares from I to 223.

Word The square root of 16 is 4. What is No resdrictinst
the square root of.p36?

Story A cube holds 27 perfect 1-inch cube&. No restricties.
How tell is the cube?

Inequalities Modulea

IA Pleae choose a or b below: InequalitieAs In opposite directions in a and b.
a. -2 > -3 The same two distinct numerical values in a and

b. each from -1 to -9 or I to 9.b. -2 -3

2A If A > B. which is larger? Either direction of inequality. Letters different
but otherwise arbitrary. "Larger" or "maler."

23 If A > 3, is A + 4 4 + B? Same digit on each side of inequality. Different
letters on epcb side of Inequality. Same letters.
for the two inequalities. Either direction for
each inaquality.

2C If A < C, is -2A > -2C Same positive or negative multiplier for each side
of second inequality. Either direction for each
inequality.

3 If A - C and if C > 3, is First two inequalities of sam direction
A < ? (arbitrarily chosen) and third inequality un-

restricted in direction.
Word If X plus 2 is greater than 6, name No restriction.

about as small a value of X as you
can think of.

Story If Bill i older than Jim and Ji3 is No restrictsmss.
older than Ned, is Ned older then Bll1

Simple Linear Equations Nodulae -

1 5 + X - 10. Solve for X. Two not necessarily different integers, each from
1 to 10. Operator may be +, -, x, or I.

2A 21 + 5 " 8. Solve for X. Three not neceearl.y different integers, each
from I to 10. Operator my be +, -, x, or /.

23 Sa - 3& - 6. No squared term permitted. A unit coefficient
for X will not be sheen.

3A 2a z b - c. Find a. Ow Integer from 2 to 2. Operators my be +, -,

x, or /. A uIt 'oefficient for a will not be shown.
35 2a + S - c. Find a. Two not necessarily different Integers, each from

I to 10. Qperstor may be +, -, x, or/. Aunit
coefficient for a will not be shown.

Word If two time a number La Increased by - o rzmstrict los.
three. the result is four lees them the
number. Mot Lp. the number?

Story Joe's coin collection contains only No restrictions.
sickles and dines. The total amount
of moey In his collection is $2.50.
am may nickels does he have.

ahodule actually used in present experiment.
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Level Sample Problem Restrictions

Polynominse Nodule

1 If Z - 3 + 2XY with X - 1 and Two terms on right-hand side of equation. Co-
Y * 2, what is the value of Z? efficients from I to 5; may be either positive

or negative. XY my be replaced by a squared
term X**2.

2 There are two factors of 9 x*e2 Three term on left-hand side of equation for
+ 5X - 2. Type one of them. quadratic equations. Four terms allowed if ex-

pressions involving X, Y, and XY (but not X**2 or
(After getting one correct) Y*e2 are used). Integer solutions only; no solu-
Now type the other factor. tion outside the range from -4 to +4.

3A If 9X**2 - 6X + 1 - 0, find two Middle term on left my be missing. Integer
possibly identical factors on the solutions only; none outside the range of -4 to +4.
left-hand side, but do not type
them. Then type a solution from
one of those factors. (After get-
ting it correct.) If there is
another distinct solution, type

it. Otherwise, type none.

3B If 12 - 4Z + 3Y - XY - 0, find the Integer solutions only; none outside the range
solution for X. (After getting it -4 to +4.
correct.) Find the solution .or Y.

No word
problem

No story
problems

aModule actually used in present experiment.
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FIRST SESSION PROCEDURES

The student in the Didactic ISO condition receives the following train-
ing in computer use (hypothesized student responses are preceded by an
asterisk, and explanatory additions are in parentheses):

Please type: (hello) The experimenter

will show you how.

* (hello)

Please type your first and last names.

*Tim Jones

Thank you. Welcome to this series of lessons in arithmetic
and algebra. The first thing to be done is to learn how to
use the machine you are now looking at.

HOW TO USE THIS COMPUTER TERMINAL

1. This is very much like a typewriter. It has keys to press
for letters, numbers, etc.

2. Whenever you see the symbol *, you are to type something.
Never start typing until you see the *.

3. First you type the kind of message the computer asks for.
Then you push the RETURN key to tell the computer you are
finished. Never type a message longer than one line in this
experiment.

Go ahead now and type any kind of a message you want.

* Hello world!

Very good!

4. When you see READY? *, do as much reading of the screen as
you want. Then press RETURN, and now material will appear.

READY? *

5. For symbols like the + and the ; sign (on the right-hand side
of the keyboard, second line from the bottom), you mast hold
down the SHIFT key while typing. Then release it.

Go ahead and type something like:

He's a good friend

or anything else you want. Remember to press REIURN when you-
are finished.

D-1

-ANM.-



* He's a jolly good fellow

Fine!

6. To type a fraction such as 2/3, type the numerator 2. Then
type the slash / (under the ? in the bottom right-hand corner
of the keyboard). Then type the denominator 3. If that is
the end of your message, be sure to press RETURN to let the
computer know you're finished. Now go ahead and type a frac-
tion. Then press RETURN.

* 2/5

Excellent!

7. If you want to type a 'one', be sure not to type a lower case
'L.' Use the '1' in the top left-hand cornter of the key-
board.

8. Follow directions carefully. If you make a mistake and then
press RETURN, there is no way to take your answer back. But,
if you want to change something before pressing RETURN, here is
what to do: First, find the CONTROL button (marked CTRL) on the
left-hand side of the keyboard. Hold it down. Then type a
little H and that will erase one symbol.

READY?

You will see that the last symbol is erased on the screen and
the underlining marker has moved back a space. If you to erase
several symbols, type 'h' several times while holding CTRL down.
Then go back to normal typing. You will learn this correction
procedure now.

Don't type anything until these instructions stop and the *

sign tells you to go ahead.

First type: run. Don't capitalize anything like this that is
shown in little letters. Next hold CTRL down with a finger on
your left hand. Then type: h three times with your right
hand. Did 'run' disappear completely? If so, take your finger
off the CTRL button. Then type: walk. Go ahead now. Always
press RETURN when you finish.

walk

That is just fine!

9. Sometimes the computer may do something really strange. In that
case, ask the experimenter to help you.

D-2
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10. We don't have a pretty symbol for ,mltiplication, so we use
a lower case x. But to name a quantity, we use capital letters
such as X, Y, and Z.

11. Usually you won't have to type anything as complex as 2 - 3.
But sometimes you will need to do so. So try now to type:
2 - 3. Be sure to leave one space on each side of a 1+' or

-..* Then press RETURN.

2-3

Very good!

12. Please don't ever use a capital letter except when you type
the first letter of your first or last name. You can also
use a capital letter for the name of a variable such as X
as we discussed earlier.

READY? *

INSTRUCTIONS ABOUT LEARNING THE LESSONS

You can learn everything you need from the computer. However,
there is a typed textbook on the table for your use during
the experiment. If a problem is unclear to you, look at the
textbook for help. The textbook also contains the computer
instructions and these instructions about learning. Be sure
to convert answers to their simplest form. If you are working
with fractions, you will say 2/3 rather than 4/6. You will also
say 1-1/3 instead of 4/3. The lessons will help you to remember
this point.

Scratch paper is always provided so that you can work on a
problem before typing your answer.

The way that you can learn with this computer is to answer
questions and then see if you are correct. You will work on
topics such as negative numbers, factors, prime numbers,
and fractions.

You will control the speed at which you will move from one
type of problem to another.

READY? *

Here are some ways to help you learn:

1. Watch what the computer says and think carefully about your
answers.
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2. If you want to know the answer to a problem, type: answer
and then press the RETURN key. Let's try this.

-2 x 3

Go ahead and type: answer

* answer

The answer is -6

Very good!

3. Another way to get help is to type in: solve and press RETURN.
When you do this, you will be able to see how the answer you
want is obtained.

Now you may try the 'solve' command. Wait for the problem
to appear. Then type: solve and press the RETURN key.

-2 x 3

* solve

This problem

-2 x 3

is to multiply a negative number, -2, and a positive number,
3, together. When a negative number is multiplied by a posi-
tive number, the product is always negative. So the solution
to

-2 x 3

is -6

READY? *

4. You can also use the computer like a calculating machine to
get answers to parts of a problem. If your current problem
is:

-2 x (3 -7)-

you might type: compute 3 - 7 and press the RETURN key. This
would give an answer to part of the total problem. Go ahead
and type the line just suggested. Use the exact spacing as
shown on the screen. One space before and after each number
or minus sign.
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compute 3 - 7

The answer is -4

Beware of one problem: COMPUTE cannot answer questions using
decimals. So please don't give it any,decimal problems.
Thank you.

5. Any time you are in trouble, you may type the word 'hint'
and press the RETURN key. Read the hint and do what is sug-
gested to solve the problem. If you still have trouble, ask
for 'hint' again. Let's try this. Wait for the problem
to appear. Then type: hint and press the RETURN key.

-2 x 3

hint

This problem

-2 x 3

is to multiply a negative number, -2 and a positive number, 3,
together. When you maltiply a negative number and a positive
number together, you always get a negative product.

6. Now you know most of the main ways to get help with your
studies. To be reminded of those ways or to learn some new ways
you can get help, type: help and then press the RETURN key.
Go ahead and do this now.

help

WAYS TO GET HELP OR TO CONTROL THE LESSONS

To learn how to respond on a current unit such as fractions,
type: instructions.

To obtain an answer to a problem, type answer.

To obtain a partial answer such as the value of 3 - 7, type:
compute 3 - 7 or replace 3 - 7 above by whatever else you
need. Do not use any decimal points with this conmad.

To see how a specific problem is solved, type: solve.

READY?

At the beginning of each new phase of this experiment, you will
be asked to choose the difficulty level of the problems you
will choose. Later on, if you want to change this difficulty
level, type: level.
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To obtain a hint for the problem you are trying to solve,

type: hint.

READY? *

To skip the problem shown to you and go on to a new problem,
type: skip.

To obtain a new kind of problem, type: module.

To stop this session before it would normally end, type:
quit.

To obtain these instructions, type: help.

Now you can begin to learn your first moth lesson on the

computer.

READY? *

The preceding sets of instructions for the Didactic ISO condition come
from the programs INSTR and SESSO. For the AFO condition, the only changes
necessary in the previous three pages are to modify Number 3 in view of a
change in SOLVE for that condition, delete Numbers 4 and 5 (deleting mention
of COMPUTE and HINT), and to renumber Number 6 accordingly. The first
session ends with about five minutes work on mathematics problems. When
SESSO is completed, MONITOR knows that no learning data are present. There-
force, in the ISO condition, MONITOR lists the different modules and asks
the student to choose one. See Appendix G for changes in this session with

students in the Confluent condition.
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ANALYSIS OF HINT PROGRAM STRUCTURE
FOR TIE FRACTIONS MODULE

The following displays all possible hints for a fraction problem, plus a
list of goals and subgoals and an updating of HINTLIST development. The
problem and hints are as displayed to students, but the hints have been
numbered here for clarity. '*' indicates an experimenter's call of a func-
tion for display purposes.

*(fraction problem)

1/2 / (2/3 + 1-1/6) =

*hint

(1) the nested term,

-2/3 + 1-1/6

should be solved first. You can then perform the division with the

result and the remaining term.

*toplist .

(REST LAST2)

*8olist

((NEST CONVERT 2 2 LCN ADD RETAIN) (LAST2 INVERT MULTIPLY))

*hintlist

((NEST LAST2))

*hint

(2) You must solve the nested term.

To do this I would suggest: The second term is mixed. It is a
good idea to convert any mixed terms to fractions before you do the
required addition.

*solist

((NEST CONVERT 2 2 LCM ADD RETAIN) (LAST2 INVERT MULTIPLY))

*hintlist

((NEST LAST2) (NEST CONVERT 2 2))

*hint '

(3) You must solve the nested term.
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To do this I would also suggest: Before the addition can be carried
out, you must find the lowest comnon denominator for the two frac-
tions you are working with. For instance, if you were working with
the two fractions 1/3 and 1/2, you would have to convert them both
to sixths. This type of conversion must be done when you add or
subtract fractions but is not necessary if you are multiplying or
dividing.

*hintlist

((NEST LAST2) (NEST CONVERT 2 2 LCM))

*hint

(4) You must solve the nested term.

To do this I would also suggest: After you have converted the two
fractions to the least common denominator, you may add the frac-
tions. To do this, you must add the two numerators (the top numbers)
and place the sum over the denominator. You do not add denominators
(the bottom numbers). So, 1/4 plus 2/4 would be 3/4.

*hintlist

((NEST LAST2) (NEST CONVERT 2 2 LCM ADD))

*hint

(5) You must solve the nested term.

To do this I would also suggest: If you carry out the addition
properly, your answer will be greater than 1. It would be 'correct'
to write your answer as a mixed fraction; for example, 1-1/2. How-
ever, because there are more terms in this problem, it will help
not to do this extra step. Instead you will save effort by leaving
the answer in its 'improper' form. In my example, 1-1/2 - 3/2.

*hintlist

((NEST LAST2) (NEST CONVERT 2 2 LCM ADD RETAIN))

*hint

(6) After solving the nested term, your problem will have two terms
remaining. You must solve the last two terms.

To do this I would also suggest: A simple rule to apply when dividing
one fraction by another is to 'invert and multiply.' That is, change
the second fraction such that the bottom number is on the top and the
top number is on the bottom. Then change the operator from division
to multiplication. You then multiply the fractions to get the proper
answer.

*hintlist
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((NEST LAST2) (NEST CONVERT 2 2 LCM ADD RETAIN) (LAST INVW))

*hilnt

(7) After solving the nested term, your problem will have two terms
remaining. You must solve the last two term.

To do this I would also suggest: As I described previously, you
must invert one of these two terms and then multiply them. I
have no more hints available. If you would like to watch me
solve this problem step by step, just type 'solve.'

*hintlist

((NEST LAST2) (NEST CONVERT 2 2 LCM ADD RETAIN) (LAST2 INVERT MULTIPLY))

*hint

(8) I have no more hints available. If you would like me to solve this
problem step by step, just type 'solve.'

After the solution of the nested term and the substitution of that solu-
tion for the nested term in TOPLIST - (NEST LAST2)., as discussed in the body.
of this report, the two subgoals of LAST2, INVERT, and MULTIPLY are suffici-
ent to combine the remaining two terms of the problem into a single answr,
which may not be in reduced form. Because the. HINT program emphasizes get-
ting a legitimate though not necessarfiy final anbwer, and because the
scoring system allows partial credit for unreduced answers and leads to
feedback specifying any failure to reduce an answer to its simplest form,
a REDUCE subgoal is not included in LAST2.

The operation of HINT in generating the information of the preceding
example may now be explained. The first hint is shown as (1). It advises
the student to work with the nested expression first and then to do the
rest of the problem. The specific hint given at any later stage depends
upon the contents of HINTLIST, which tracks the progress of the advice given
to the student. (It is not sensitive to other partial solutions developed
by the student, assuming that a student will perform the process recomended
by one hint before calling for another.) Before the second commad, HINTLIST
consists of

( (NEST LAST2) )

since the first hint has called attention to the two parts of the problem.
So a hint about NEST is an elaboration of the previous hint about dealing
with the nested term.

The student is told in the second numbered hint that it is a good idea
to convert any mixed terms (integer plus fraction) to fractions (actually
Improper fractions) before doing the next step. Once this instruction has
been given, HINTLIST becomes

2-3
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( (NEST LAST 2) )
(NEST CONVERT 2 2) ).

The third hint tells the student that, to solve the nested term, the
lowest common denominator of the two component fractions must be determined.
An example of such a determination is partially described. Now HINTLIST
is changed to also include LC:

( (NEST LAST2)
(NEST CONVERT 2 2 LCM) ).

The fourth hint tells the student that solution of the nested term
requires the addition of the numerators of the two fractions after they
have been converted to the lowest common denominator. An example is given.
Then HINTLIST becomes:

( (NEST LAST2)
(NEST CONVERT 2 2 LCM ADD) ).

The fifth hint is the last concerned with the nested term. It advises
the student not to convert the answer for the nested term into a mixed frac-
tion such as 1-1/2 from its present improper form, such as 3/2, since the
reverse step would simply have to be performed later. This leaves HINTLIST
in the form

( (NEST LAST2)
(NEST CONVERT 2 2 LCM ADD RETAIN) ).

The sixth hint points out that all that remains to be done to solve the
original problem is to deal with the two remaining terms. The student is
advised to perfrom the required division by the rule "invert and multiply."
HINTLIST now beings a new sublist involving LAST2 and a part of the information
in this hint:

( (NEST IAST2)
(NEST CONVERT 2 2 LCM ADD RETAIN)
(LAST2 INVERT) ).

The final hint repeats the substance of Hint 6, advises the student that
no more hints are available, and refers the student to SOLVE for a step-by-
step demonstration of the solution. The final HINTLIST becomes

( (NEST LAST2)
(NEST CONVERT 2 2 LCM ADD RETAIN)
(LAST 2 INVERT MULTIPLY) ).

Notice that, in the ISO system, HINT and SOLVE (discussed more fully in
the main text and in Appendix F) bear most of the responsibility of ordinary
text in textbooks or of most previous CAI systems. Except for the reference
textbooks available beside each terminal, students receive almost no informa-
tion about a curriculum unit except in their solving of problems and in
the feedback offered to them, the answer given when ANSWER is called, or
in HINT and SOLVE.
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A further interesting feature of this HINT system is that HINTLIST
is generated by a process very close-to the LISP operating of CA~ixng itemsfrom a solution procedure list (SOLIST) and APPENDing them to HnTLIST.Each such pair of steps provides the occasion for writing a hint compatible
with the subgoal being added to HINTLIST.
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SOLVE PROGRAM STRUCTURE FOR THE FRACTIONS MODULE
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SOLVE PROGRAM STRUCTURE FOR THE FRACTIONS MOULE
Partial Production System for Solving Fraction Problems Using SOLVE

P1 SOLVE Solution-term
( (problem - (term - ) -> (satisfy SOLVE) )

P2 SOLVE( (problem not - (term - ) ) (problem has nested term) =>(frame - nested term) (setgoal NEST) )

P3 SOLVE( (problem not - (term = ) ) (problem has no nested term)(problem has more than two terms) ->(frame - terml operatorl term2) (setgoal FIRST2) )

P4 SOLVE
( (problem not - (term - ) ) (problem has no nested term)(problem has only two terms) ->

(frame - problem) (setgoal LAST2) )

P5' NEST
( (frame - term) =>(problem - substitute frame for nested term in problem)

(satisfy NEST) )

P6 NEST
( (frame - (term op term) ) -> (setgoal COWINE) )

P7 FIRST2
(frame - term) -> .-(problem - substitute frame for terml operatorl term2

in problem) (satisfy FIRST2) )

P8 FIRST2
(frame - term op term) -> (setgoal COMBINE) )

P9 LAST2
( (frame - term) =>

(problem - (frame-) ) (satisfy LAST2) )

PlO LAST2
( (frame - term op term) -> (setgoal COMBINE) )

Pll COMBINE
(frame - term) (term is in reduced form)(numerator less than denominator) => (satisfy COMBINE) )

P12 COMBINE
( (frame - term) (term in reduced form)(numerator greater than or equal to denominator) *>(setgoal IM PROPER) )
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P13 COMBINE
( (frame - term) (term not in reduced form) ->

(setgoal REDUCE) )

P14 COMBINE
( (frame = term op term) (op -+ > (setgoal ADD) )

P15 COMBINE
( (frame - term op term) (op -) => (setgoal SUB) )

P16 COMBINE
( (frame - term op term) (op - X) > (setgoal MUL) )

P17 COMBINE
( (frame - term op term) (op - I) -> (setgoal DIV) )

P18 ADD
( (denominator of terml - denominator of term2) ->

(frame = sum of terml and term2) (satisfy ADD) )

P19 ADD
( (denominator of terml not - denominator of term2) >

(setgoal LCM) )

P20 SUB
( (denominator of terml - denominator of term2) >

(frame - difference of terml and term2) (satisfy SUB) )

P21 SUB
( (denominator of term 1 not denominator of term2) ->

(setgoal LCM) )

P22 MUJL
( (terml or term2 is mixed) -> (setgoal IMPROPER) )

P23 HUL
( (terml and term2 are not mixed) ->

(frame - product of terml and term2) (satisfy MUL) )

P24 DIV
( (terml or term2 is mixed) -'

(frame - mixed term) (setgoal IMPROPER) )

P25 DIV
( (terml and term2 are not mixed) -> (setgoal INVERT) )

P26 DIV
( (frame- term) -> (satisfy DIV) )
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The use of a production system wll now be explained for readers to
whom the idea is new, with reference to the above system. The productions of
27 LCN, 28 INPROPER, 29 INVERT, 30 INVERT, 31 REDUCE, and new productions
called by them are omitted to save space and complexity of display.

The use of a production system begins with the specification of a goal
and a problem. For example, let the goal be SOLVE and the problem be the
same one discussed in Appendix E:

1/2 / (2/3 + 1-1/6) =

This allows the setting of SOLVE in Figure F-1, a history of successive goal
stacks during problem solution.

At the beginning, the stack has an instruction to set SOLVE goal at the
top of the figure. Each row below the top represents the stack at a later
stage. The top of any stack is its rightmost goal.

The next step in analyzing the SOLVE process is to start at the top of
the list of production rules (P1, P2, ... ) and examine each to see if the
goal at the top of the current goal stack is stated in capital letters at
the beginning of the rule and if the condition or conditions given within
the rule are met. If these requirements are satisfied, then the action
following the arrow for that production rule is taken. In the second row
of Figure F-I, the first goal is SOLVE. The first such rule activated by
this problem is P2-the goal is SOLVE, the problem is not just to evaluate
a single term, and the problem has a nested term. Therefore, the actions
required by P2 are taken: a so-called frame becomes equal to the nested
teri (2/3 + 1-1/6), and the goal NEST is set at the top of the goal stack.
This brings us to the third row of Figure F-1, showing that the goal stack
contains SOLVE and NEST, with NEST on top.

Once a production rule has been found to apply and the required actions
have been taken, control passes to the top of the production list again.
Now, a search takes place for an acceptable proddtion with NEST at the top
of the goal stack. P6 proves to be the appropriate production, for NEST
is at the top of the goal stack and the condition (frame - (term op term))
is satisified by the frame (2/3 + 1-1/6), where op stands for operator
and may be either +, -, x, or /, the four basic arithmetic operators.
Therefore, the action required by P6 is taken: the goal CO(BINE is added
to the top of the goal stack. This establishes the fourth row of Figure
F-1. Next, one must start again at the top of the production rule list
and look for an applicable rule with CONDINE at the top of the goal stack.
The same general procedure already outlined will continue until this problem
is solved.

Further study of the Partial Production System would show that the com-
plete sequence of productions to be applied (including the two already
listed) is P2, P6, P14, P19, P27, P18, P12, P28, 111, P3, P4, P10, P17,
P24, P28, P25, P29, P23, P30, P26, P13, P31, Pll, P9, and P1. As each
production is performed, a new row of Figure F-1 is generated, until the
problem is solved by satisfying the top goal SOLVE and the figure is com-
plete.
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set SOLVE

SOLVE set NEST

SOLVE NEST set COMBINE

SOLVE NEST COMBINE set ADD

SOLVE NEST COMBINE ADD set LCM

SOLVE NEST COMBINE ADD ~satisfy LCM

SOLVE NEST COMBINE ADD satisfy ADD

SOLVE NEST COMBINE set IMPROPER

SOLVE NEST COMBINE IMP R atisfy IMPROPER

SOLVE NEST COMBINE satisfy COMBINE

SOLVE NEST satisfy NEST

SOLVE set LAST2

SOLVE LAST2 set COMBINE

SOLVE LAST2 COMBINE set DIV

SOLVE LAST2 COMBINE DIV set IMPROPER

SOLVE LAST2 COMBINE DIV IREt satisfy IMPROPER

SOLVE LAST2 COMBINE DIV set INVERT

SOLVE LAST2 COMBINE DIV INVERT set HTL

SOLVE LAST2 COMBINE DIV INVERT MUL satisfy MUL

SOLVE LAST2 COMBINE DIV INVERT satisfy INVERT

SOLVE LAST2 COMBINE DIV satisfy DIV

SOLVE LAST2 COMBINE set REDUCE

SOLVE LAST2 COMBINE REDUCE I  satisfy REDUCE

SOLVE LAST2 COMBINE satisfy COMBINE

SOLVE LAST2 satisfy LAST2

SOLVE satisfy SOLVE

Pigure F-1. Goal stack trace for "1/2 / (2/3 + 1-1/6)
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The utility conmmand SOLVE is closely related to SUPERSOLVE, a program
for finding solutions as needed in checking student answers and in facilitat-
ing the operation of ANSWER, HINT, and SOLVE. Now that the goal structure
of SOLVE and the related goal structure of HINT have been shown, it is of
interest to display an example of the computer's response to the student
command SOLVE. The following example presents that response for the frac-
tions problem under discussion.

1/2 / (2/3 + 1-1/6) -

This problem contains a nested term,

2/3 + 1-1/6.

It will be necessary to solve it first. The second term is mixed.
This term, 1-1/6, must be converted to sixths. There are 6 sixths

in 1. 6 sixths plus 1 sixth is 7 sixths. So, 1-1/6 can be con-
verted to 7/6.

So, now we must solve (2/3 + 7/6). However, these terms must first
be converted to their least common multiple. Terms must have the
same denominators whenever you are adding or subtracting. It is
not necessary if you are multiplying or dividing. The least common
multiple for two fractions is the smallest number that both of the
denominators will divide evenly. For example, the least common
multiple for 2 and 3 is 6. This is because both 2 and 3 divide
6 evenly, and there is no smaller number forwhich this is true.
As another example, the least common multiple for 5 and 10 is 10.
Here, 10 divides itself evenly, as does 5. No other number which
is smaller than 10 will satisfy this condition. The least common
multiple for these two denominators, 3 and 6, is 6. We must
convert 2/3 to sixths. Since 6 divided by 3 is 2, both the numera-
tor and denominator of 2/3 must be multiplied by 2 to convert it
to sixths. So, 2/3 becomes 4/6. Here 7/6 must be added to 4/6.
We simply add the numerators and place the result over the
denominator. So 4 plus 7 equals 11. Therefore,

4/6 + 7/6

is 11/6. Because the numerator of 11/6 is larger than the
denominator, we could convert this fraction to a 'mixed' form.
Ilowever, because we will need to operate on more terms in this
problem, we will leave it in its 'improper' form. We have reduced
the problem from

1/2 / (2/3 + 1-1/6) -

to two terms. We may now solve

1/2 / 11/6 -

directly. In order to divide 1/2 by 11/6, we must apply the 'invert
and multiply' rule. That is, the second term must be changed such
that the numerator and the denominator switch places. Then the
two terms are multiplied. So,
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1/2 / 11/6

becomes

1/2 x 6/11.

In order to multiply fractions, the two numerators and the two
denominators must be multiplied. To do this, multiply 1 and 6.
This is the numerator of the answer. Also multiply 2 and 11.
This is the denominator of the answer. So, 1/2 x 6/11 is equal
to 6/22. Notice 6/22 can be reduced. To reduce a fraction,
you must find the largest number which will divide both the
numerator and the denominator evenly. For example, the frac-
tion 5/10 can be reduced. Both the numerator and the denominator
can be divided by 5. When the division is carried out, 5 divided
by 5 is 1 and 10 divided by 5 is 2. So, 5/10 can be reduced
to 1/2. This makes sense because five-tenths of anything is
the same as one-half. When we reduce 6/22, we find that both
its numerator and denominator can be divided by 2. When we do
the division, we get 6 divided by 2 equals 3, and 22 divided by
2 equals 11. So, 6/22 is reduced to 3/11. So the solution to

1/2 / (2/3 + 1-1/6) -

is 3/11.

A similar process is involved in the use of HINT and SOLVE routines in
story problems. In an investigation of processing strategies for solving
algebra word problems, Hinsley, Hayes, and Simon (1976) found evidence that
people employ various "problem-type schemas" or "frames" that assist in
translating story problems from prose to equations, or sets of equations,
which may then be solved directly. More specifically, they found that:

1. People can categorize problems into types.

2. People can categorize problems without completely formulating them
for solution.

3. People have a body of information about each problem type that
is potentially useful.

4. People use category identifications to formulate problems in the
course of actually solving them.

One might hypothesize that people solve story problems by the following
process:

1. Identify the appropriate problem-type schema.

2. Identify and assign values provided by the problem to the proper
nodes, or empty cells of the schema.

3. Carry out the operations on these values as specified by the schema.
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Early assistance in solving story problems provided by HINT and the
initial stages of the step-by-step solutions generated by SOLVE are largely
structured by the theoretical process mentioned above. That is, the student
is first helped to identify the appropriate problem-type schema and its
values. If this assistance has not been sufficient, then it is assimed
(depending upon specific characteristics of the problem) that either the
student has failed to carry out arithmetic operations necessitated by the
schema, or the schema was not available in the student's memory.

Rumelhart & Norman (in press) suggested that the most common method of
producing new schemas my be the modification or combination of existing,
nearly appropriate schemas. With this in mind, later HINTs and stages of
SOLVE attempt to decompose the appropriate schema into combinations or
modifications of schemas that are likely to be available to the student.
The products of appropriate mathematical operations nay also be provided.

Currently, the HINT and SOLVE routines are unable to decompose story
problems, identify an appropriate schema, and then determine an appropriate
sequence of instructional text. Story problems are generated from skeletons,
or frames, of text containing variables. At the time of generation, values
for the variables (both numerical and prose) are selected within the bounds
of the story. Currently, a series of hints and a step-by-step solution also
exist in skeleton form for each story problem type. When HINT or SOLVE is
called for a story problem, these skeletons are filed by the variable values
selected for the current story problem.
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DETAILS OF DESIGN OF CONFLUENT (AFFECTIVE) PROCU=E

The Confluent procedure used in the CAI system makes little change in
the substance of instruction or the mode of presentation of specific items.
Most of the procedure is the introduction of additional material of an
affective nature and a consequent small reduction in the amount of time
available for presentation of mathematics problems to be solved. Part of
the added material is intended to make the computer seem more like a friendly
teacher who calls you by name, asks how you feel, and tells you how to relax
when you are having difficulty. Another part is intended to allow face-to-
face comunication with another student to permit the sharing of experiences
with the experiment and about the learning of mathematics. A third segment
of the Confluent condition is pure entertainment, distracting the student
from any anxiety introduced by the experimental situation. Details of the
Confluent condition are now presented, beginning with Sessions 1 and 2,
since they receive special emphasis in this condition.

Session 1

In the Confluent conditions, the initial instructions for signing on
to the computer and using the computer terminal are slightly modified, per-
sonalized versions of instructions given in Appendix D. Next, a digression
on astrology takes place.

Because the birthdate of each student was recorded when NKFIL established
a data file for that student, it is possible to determine the astrological
sign for the student and to enegage in the following sort of dialogue on
Session 1, shown for a student born on March 22:

(Name), you are an Aries-are you really a pioneering and

adventurous spirit?

*no

Are you courageous?

Are you direct in your approach?

*no

Are you highly energetic?

*no

Are you a hater of restriction and a lover of freedom?

*no

Since this exhausts the stored list of properties, the computer ends
this episode dialogue with,

Well, so much for astrology!
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If the student had said 'yes' to any oi- these queries, the computer
would have closed the diaglogue at that PoQ1iL with,

I knew that because you are an Aries.

Finally, a slightly modified section on how to use the computer is dis-

played, followed by about 5 minutes of mathematics instruction.

Session 2

Session 2 begins with each of two ConfluentL students signing into a
separate terminal in the same experimenLal room. After a standard greeting,
the first one to sign in then receives the following instructions:

Today you will work directly with the person at the other
terminal iii this room. Do not respond any more on this

terminal until I ask you to, (name).

The second person to sign in receives these instructions:

(Name), now I would like you to get up and go over to your
neighbor.

An additional message on the fLrsL turminal is given to the two persons
to sign in (first name or mood of , ppropri;itt student goes in blanks):

Hi , glad you cin joiin us. You were feeling
last time we met. AnJ you, , were

feeling last :sc.sLor. how do you feel about
working together? Please take torr- telling me. First,

*I don't know yut.

O.K., now what about yon,

*It's a change, so maybe it will 5 glod.

Thanks, and

Now that you are both togcLler, 1 would like both of you
to talk together to review the first day's lesson. I want
you to spend only a few minutes talking. Please start by
asking each other what you arc vot juite sure of in using
me. Some possible examples are:

Do you know how to log me in?

What happens when you don't press RETURN?

How do you write a fraction?
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What kind of answers do I want?

How do you erase what you have written?

Go ahead and talk. When you hear me beep, stop talking and
look at m again.

Now it is time to work on math problems. Thanks a lot,
, for coming over and working with us. Please go

back to your terminal

Then both terminals say:

Please press RETURN if you are ready to continue when I give
you the READY? message. Thank you.

After the student indicates that he is ready to continue, the computer con-
cludes this portion of dialogue with the following:

O.K., ,_ , let's go on with our lesson.

General Procedure for All Sessions

Each session begins with the greeting,

Welcome to Session You felt last session.
How do you feel today? I'm and I'm here to
help you again.

Whenever a student fails two successive items, he or she receives special
instructions. Four options exist-two with advice about learning procedures
and two with relaxation instructions. The first three options run sequentially
across problems and repeat after each has been used. If a person makes eight
successive errors, the fourth option used with that problem is Number 4
and is likely to lead to giving up on that problem.

1. Students are told that the task is unusual because information is
provided during or after a problem rather than before it. Then they are
reminded of the ANSWER and HELP routines and encouraged to try them.

2. The following instructions are given:

You're making mistakes now and that must be frustrating.
Relax. You're doing fine. You'll soon find out what is
going wrong. Take a minute to relax. Let as finish my in-
structions before you follow my next suggestions. Don't close
your eyes until you have seen all my suggestions.

Please pay attention to your breathing. I want you to take
deep breaths and let the tension out of your shoulders. Get
in the most comfortable position you can in your chair. Close
your eyes and continue breathing deeply. Imagine you are in
your most favorite retreat, i.e., beach, mountains, living room
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* .*. . Find a nice comfortable spot and lie down. Let the

warm sun soothe your body. Remember, this is just a fantasy,
so anything can happen and everything is perfect. Just enjoy
the setting around you.

READY?*

Imagine all the good things, sounds, smells, feelings that

surround you. Continue to breathe deeply.

When you hear me beep, please open your eyes and come back

to this room.

Please reread my directions as they appear again.

, it may be possible to do this exercise without
closing your eyes. If you want to keep your eyes open while
you fantasize, that is fine with me. Please begin your day
dream now.

3. The following instructions are given:

Well, , things seem to be a little frustrating right
now. I want you to take a few seconds and stand up and stretch.
Don't worry about me. I will beep when I want you to come back
to me to continue on to the next lesson. So keep stretching
until you hear me beep.

For instructions 1 and 3, a beep recalls the student to the terminal and
the session continues with:

Now we will go back to the problem that you were working on.
I know it is frustrating when you can't find your mistakes right
away. But if you relax, it will be easier on you.

The fourth set of instructions (following eight successive errors on a single
problem) is substantially different.

Have you tried all the different aids I told you about? If
not, go ahead and try everything listed when you type: help.
Just take it easy and relax. Sometimes it takes a little time
to figure out the problem--you are doing fine! So either type:
'stuck' if you can't think of anything to do or request one
of the standards such as 'help; if you want to try them.
(If answer was 'stuck,' continue with the following:)
All right , since you have tried all the aids and
the solution is not clicking for you right now, I'll give
you a new problem. This will be a good time for you to
stand up and take a breather for a second.
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Other Features of the Confluent Procedure

Session 4 begins with a lesson on following directions and avoiding
Jumping to conclusions. Session 8 begins with a dialogue In which a pair
of Confluent students discuss their early school experiences, emphasizing
success and failure in nthematics as compared to other subjects. Session
11 begins with a lesson on abstract and concrete relationships.
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